Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161764

RESUMO

Dedicated research is currently being conducted on novel thin film magnetoelectric (ME) sensor concepts for medical applications. These concepts enable a contactless magnetic signal acquisition in the presence of large interference fields such as the magnetic field of the Earth and are operational at room temperature. As more and more different ME sensor concepts are accessible to medical applications, the need for comparative quality metrics significantly arises. For a medical application, both the specification of the sensor itself and the specification of the readout scheme must be considered. Therefore, from a medical user's perspective, a system consideration is better suited to specific quantitative measures that consider the sensor readout scheme as well. The corresponding sensor system evaluation should be performed in reproducible measurement conditions (e.g., magnetically, electrically and acoustically shielded environment). Within this contribution, an ME sensor system evaluation scheme will be described and discussed. The quantitative measures will be determined exemplarily for two ME sensors: a resonant ME sensor and an electrically modulated ME sensor. In addition, an application-related signal evaluation scheme will be introduced and exemplified for cardiovascular application. The utilized prototype signal is based on a magnetocardiogram (MCG), which was recorded with a superconducting quantum-interference device. As a potential figure of merit for a quantitative signal assessment, an application specific capacity (ASC) is introduced. In conclusion, this contribution highlights metrics for the quantitative characterization of ME sensor systems and their resulting output signals in biomagnetism. Finally, different ASC values and signal-to-noise ratios (SNRs) could be clearly presented for the resonant ME sensor (SNR: -90 dB, ASC: 9.8×10-7 dB Hz) and also the electrically modulated ME sensor (SNR: -11 dB, ASC: 23 dB Hz), showing that the electrically modulated ME sensor is better suited for a possible MCG application under ideal conditions. The presented approach is transferable to other magnetic sensors and applications.


Assuntos
Coração , Campos Magnéticos , Magnetismo , Razão Sinal-Ruído
2.
Sensors (Basel) ; 21(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34833678

RESUMO

Recently, Delta-E effect magnetic field sensors based on exchange-biased magnetic multilayers have shown the potential of detecting low-frequency and small-amplitude magnetic fields. Their design is compatible with microelectromechanical system technology, potentially small, and therefore, suitable for arrays with a large number N of sensor elements. In this study, we explore the prospects and limitations for improving the detection limit by averaging the output of N sensor elements operated in parallel with a single oscillator and a single amplifier to avoid additional electronics and keep the setup compact. Measurements are performed on a two-element array of exchange-biased sensor elements to validate a signal and noise model. With the model, we estimate requirements and tolerances for sensor elements using larger N. It is found that the intrinsic noise of the sensor elements can be considered uncorrelated, and the signal amplitude is improved if the resonance frequencies differ by less than approximately half the bandwidth of the resonators. Under these conditions, the averaging results in a maximum improvement in the detection limit by a factor of N. A maximum N≈200 exists, which depends on the read-out electronics and the sensor intrinsic noise. Overall, the results indicate that significant improvement in the limit of detection is possible, and a model is presented for optimizing the design of delta-E effect sensor arrays in the future.

3.
Sensors (Basel) ; 21(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451074

RESUMO

Surface acoustic wave (SAW) sensors for the detection of magnetic fields are currently being studied scientifically in many ways, especially since both their sensitivity as well as their detectivity could be significantly improved by the utilization of shear horizontal surface acoustic waves, i.e., Love waves, instead of Rayleigh waves. By now, low-frequency limits of detection (LOD) below 100 pT/Hz can be achieved. However, the LOD can only be further improved by gaining a deep understanding of the existing sensor-intrinsic noise sources and their impact on the sensor's overall performance. This paper reports on a comprehensive study of the inherent noise of SAW delay line magnetic field sensors. In addition to the noise, however, the sensitivity is of importance, since both quantities are equally important for the LOD. Following the necessary explanations of the electrical and magnetic sensor properties, a further focus is on the losses within the sensor, since these are closely linked to the noise. The considered parameters are in particular the ambient magnetic bias field and the input power of the sensor. Depending on the sensor's operating point, various noise mechanisms contribute to f0 white phase noise, f-1 flicker phase noise, and f-2 random walk of phase. Flicker phase noise due to magnetic hysteresis losses, i.e. random fluctuations of the magnetization, is usually dominant under typical operating conditions. Noise characteristics are related to the overall magnetic and magnetic domain behavior. Both calculations and measurements show that the LOD cannot be further improved by increasing the sensitivity. Instead, the losses occurring in the magnetic material need to be decreased.

4.
Biosensors (Basel) ; 11(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201480

RESUMO

The treatment of refractory epilepsy via closed-loop implantable devices that act on seizures either by drug release or electrostimulation is a highly attractive option. For such implantable medical devices, efficient and low energy consumption, small size, and efficient processing architectures are essential. To meet these requirements, epileptic seizure detection by analysis and classification of brain signals with a convolutional neural network (CNN) is an attractive approach. This work presents a CNN for epileptic seizure detection capable of running on an ultra-low-power microprocessor. The CNN is implemented and optimized in MATLAB. In addition, the CNN is also implemented on a GAP8 microprocessor with RISC-V architecture. The training, optimization, and evaluation of the proposed CNN are based on the CHB-MIT dataset. The CNN reaches a median sensitivity of 90% and a very high specificity over 99% corresponding to a median false positive rate of 6.8 s per hour. After implementation of the CNN on the microcontroller, a sensitivity of 85% is reached. The classification of 1 s of EEG data takes t=35 ms and consumes an average power of P≈140 µW. The proposed detector outperforms related approaches in terms of power consumption by a factor of 6. The universal applicability of the proposed CNN based detector is verified with recording of epileptic rats. This results enable the design of future medical devices for epilepsy treatment.


Assuntos
Redes Neurais de Computação , Convulsões/diagnóstico , Algoritmos , Animais , Encéfalo , Eletroencefalografia , Epilepsia , Humanos , Ratos
5.
Sci Rep ; 11(1): 11453, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075097

RESUMO

Methane emissions along the natural gas supply chain are critical for the climate benefit achievable by fuel switching from coal to natural gas in the electric power sector. For Germany, one of the world's largest primary energy consumers, with a coal and natural gas share in the power sector of 35% and 13%, respectively, we conducted fleet-conversion modelling for reference year 2018, taking domestic and export country specific greenhouse gas (GHG)-emissions in the natural gas and coal supply chains into account. Methane leakage rates below 4.9% (GWP20; immediate 4.1%) in the natural gas supply chain lead to overall reduction of CO2-equivalent GHG-emissions by fuel switching. Supply chain methane emissions vary significantly for the import countries Russia, Norway and The Netherlands, yet for Germany's combined natural gas mix lie with << 1% far below specific break-even leakage rates. Supply chain emission scenarios demonstrate that a complete shift to natural gas would emit 30-55% (GWP20 and GWP100, respectively) less CO2-equivalent GHG than from the coal mix. However, further abating methane emissions in the petroleum sector should remain a prime effort, when considering natural gas as bridge fuel on the path to achieve the Paris climate goals.

6.
Anal Bioanal Chem ; 410(13): 3073-3091, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29663058

RESUMO

Wolframite has been specified as a 'conflict mineral' by a U.S. Government Act, which obliges companies that use these minerals to report their origin. Minerals originating from conflict regions in the Democratic Republic of the Congo shall be excluded from the market as their illegal mining, trading, and taxation are supposed to fuel ongoing violent conflicts. The German Federal Institute for Geosciences and Natural Resources (BGR) developed a geochemical fingerprinting method for wolframite based on laser ablation inductively coupled plasma-mass spectrometry. Concentrations of 46 elements in about 5300 wolframite grains from 64 mines were determined. The issue of verifying the declared origins of the wolframite samples may be framed as a forensic problem by considering two contrasting hypotheses: the examined sample and a sample collected from the declared mine originate from the same mine (H1), and the two samples come from different mines (H2). The solution is found using the likelihood ratio (LR) theory. On account of the multidimensionality, the lack of normal distribution of data within each sample, and the huge within-sample dispersion in relation to the dispersion between samples, the classic LR models had to be modified. Robust principal component analysis and linear discriminant analysis were used to characterize samples. The similarity of two samples was expressed by Kolmogorov-Smirnov distances, which were interpreted in view of H1 and H2 hypotheses within the LR framework. The performance of the models, controlled by the levels of incorrect responses and the empirical cross entropy, demonstrated that the proposed LR models are successful in verifying the authenticity of the wolframite samples. Graphical abstract Geochemical wolframite fingerprinting.

7.
J Forensic Sci ; 62(4): 881-888, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28585687

RESUMO

Ongoing violent conflicts in Central Africa are fueled by illegal mining and trading of tantalum, tin, and tungsten ores. The credibility of document-based traceability systems can be improved by an analytical fingerprint applied as an independent method to confirm or doubt the documented origin of ore minerals. Wolframite (Fe,Mn)WO4 is the most important ore mineral for tungsten and is subject to artisanal mining in Central Africa. Element concentrations of wolframite grains analyzed by laser ablation-inductively coupled plasma-mass spectrometry are used to establish the analytical fingerprint. The data from ore concentrate samples are multivariate, not normal or log-normal distributed. The samples cannot be regarded as representative aliquots of a population. Based on the Kolmogorov-Smirnov distance, a measure of similarity between a sample in question and reference samples from a database is determined. A decision criterion is deduced to recognize samples which do not originate from the declared mine site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...