Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Imaging ; 40(5): 283-299, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29848216

RESUMO

The axial resolution of a B-mode (or intensity) image is limited by the bandwidth of the pulse envelope. In this report, we investigate the source of this limitation by examining the transfer of high-resolution information from the tissue impedance variance throughout the imaging process. For that purpose, we express the mean and variance of the echo-intensity signal as a linear system to track the flow of object information along the image-formation chain. The results reveal how demodulation influences the available information by discarding high spatial-frequency information. This analysis further points to a simple way to recover lost information with only a minor addition to signal processing. Software phantoms are used to show that under ideal conditions, information from small-scale high-contrast reflectors, such as microcalcifications, can be significantly enhanced with this simple change to echo processing.


Assuntos
Calcinose/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Método de Monte Carlo
2.
Artigo em Inglês | MEDLINE | ID: mdl-28092533

RESUMO

Despite a great deal of work characterizing the statistical properties of radio frequency backscattered ultrasound signals, less is known about the statistical properties of demodulated intensity signals. Analysis of intensity is made more difficult by a strong nonlinearity that arises in the process of demodulation. This limits our ability to characterize the spatial resolution and noise properties of B-mode ultrasound images. In this paper, we generalize earlier results on two-point intensity covariance using a multivariate systems approach. We derive the mean and autocovariance function of the intensity signal under Gaussian assumptions on both the object scattering function and acquisition noise, and with the assumption of a locally shift-invariant pulse-echo system function. We investigate the limiting cases of point statistics and a uniform scattering field with a stationary distribution. Results from validation studies using simulation and data from a real system applied to a uniform scattering phantom are presented. In the simulation studies, we find errors less than 10% between the theoretical mean and variance, and sample estimates of these quantities. Prediction of the intensity power spectrum (PS) in the real system exhibits good qualitative agreement (errors less than 3.5 dB for frequencies between 0.1 and 10 cyc/mm, but with somewhat higher error outside this range that may be due to the use of a window in the PS estimation procedure). We also replicate the common finding that the intensity mean is equal to its standard deviation (i.e., signal-to-noise ratio = 1) for fully developed speckle. We show how the derived statistical properties can be used to characterize the quality of an ultrasound linear array for low-contrast patterns using generalized noise-equivalent quanta directly on the intensity signal.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Modelos Lineares , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Simulação por Computador , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...