Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 4): 119065, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723990

RESUMO

The present research study combines chitin from shrimp waste with the oxide-rich metakaolin. Metakaolin is a blend of mixed oxides rich in silica and alumina with good adsorbent properties. The chitin@metakaolin (CHt@M.K.) composite was synthesized and characterized using FTIR, SEM, TGA, XRD and XPS techniques. Cr(VI) removal studies were compared for chitin and CHt@M.K. through adsorption. It was found that the adsorption capacity of CHt@M.K. is 278.88 mg/g, almost double that of chitin, at pH 5.0 in just 120 min of adsorption. Isotherm models like Langmuir, Freundlich, Temkin and Dubinin-Radushkevich were investigated to comprehend the adsorption process. It was revealed that Langmuir adsorption isotherm is most suitable to elucidate Cr(VI) adsorption on CHt@M.K. The adsorption kinetics indicate that pseudo first order was followed, indicating that the physisorption was the process that limited the sorption process rate. The positive enthalpy change (20.23 kJ/mol) and positive entropy change (0.083 kJ/mol K) showed that the adsorption process was endothermic and more random at the solid-liquid interface. The negative free energy change over entire temperature range was an indicator of spontaneity of the process. Apart from all these, the non-covalent interactions between Cr(VI) and composite were explained by quantum calculations based models.


Assuntos
Exoesqueleto , Quitina , Cromo , Poluentes Químicos da Água , Quitina/química , Animais , Cromo/química , Adsorção , Poluentes Químicos da Água/química , Exoesqueleto/química , Braquiúros/química , Cinética
2.
Molecules ; 29(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338393

RESUMO

Synthesis of the natural product prattinin A and some new derivatives has been achieved using abietic acid. The final products and a selection of intermediates were evaluated for their antibacterial activity against three human pathogenic bacteria: E. coli, P. aeruginosa, and S. aureus. The results showed that the antibacterial activity varies depending on the chemical structure of the compounds. Notably, compound 27 exhibited the most potent activity against E. coli and P. aeruginosa, with a minimal inhibitory concentration (MIC) of 11.7 µg/mL, comparable to that of the standard antibiotic ciprofloxacin, and strong activity against S. aureus, with an MIC of 23.4 µg/mL. Furthermore, we assessed the stability of these derivative compounds as potential antimicrobial agents and determined their interactions with the crystal structure of the protein receptor mutant TEM-12 from E. coli (pdb:1ESU) using molecular docking via UCSF Chimera software 1.17.3. The results suggest that 27 has potential as a natural antibiotic agent.


Assuntos
Anti-Infecciosos , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Abietanos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
3.
Int J Biol Macromol ; 263(Pt 2): 129989, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354916

RESUMO

In this study, the synthesis and experimental theoretical evaluation of a new chitosan/alginate/hydrozyapatite nanocomposite doped with Mn2 and Fe2O3 for Cr removal was reported. The physicochemical properties of the obtained materials were analyzed using the following methods: SEM-EDX, XRD, FTIR, XPS, pH drift measurements, and thermal analysis. The adsorption properties were estimated based on equilibrium and adsorption kinetics measurements. The Langmuir, Freundlich and Temkin isotherms were applied to analyze the equilibrium data. The thermodynamic analysis of adsorption isotherms was performed. A number of equations and kinetic models were used to describe the adsorption rate data, including pseudo-first (PFOE) and pseudo-second (PSOE) order kinetic equations. The obtained test results show that the synthesized biomaterial, compared to pure chitosan, is characterized by greater resistance to high temperatures. Moreover, this biomaterial had excellent adsorption properties. For the adsorption of Cr (VI), the equilibrium state was reached after 120 min, and the sorption capacity was 455.9 mg/g. In addition, DFT calculations and NCI analyses were performed to get more light on the adsorption mechanism of Cr (VI) on the prepared biocomposite.


Assuntos
Quitosana , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Óxidos , Águas Residuárias , Quitosana/química , Cromo/química , Adsorção , Alginatos/química , Compostos Férricos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cinética , Materiais Biocompatíveis , Nanocompostos/química , Concentração de Íons de Hidrogênio
4.
J Biomol Struct Dyn ; : 1-15, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817499

RESUMO

A mechanistic study was performed within the molecular electron density theory at the B3LYP/6-311G (d,p) computational level to explain the regioselectivity observed. An electron localization function analysis was also performed, and the results confirm the zwitterionic-type (zw-type) mechanism of the cycloaddition reactions between nitrile oxide and alkylated 4H-chromene-2-carboxylate derivatives and shed more light on the obtained regioselectivity experimentally. In silico studies on the pharmacokinetics, ADME and toxicity tests of the compounds were also performed, and it was projected that compounds 5a, 5b, 5c and 5d are pharmacokinetic and have favorable ADME profiles. Moreover, docking and molecular dynamics investigations were conducted to evaluate the interactions, orientation and conformation of the target compounds on the active sites of four distinct enzymes. The results of this investigation showed that two compounds, 5a and 5c, interacted effectively with the S. aureus active site while maintaining acceptable binding energy.Communicated by Ramaswamy H. Sarma.

5.
J Mol Model ; 29(9): 288, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37610432

RESUMO

CONTEXT: Metal-free heterogeneous materials have attracted great interest due to their potential to facilitate various organic transformations in line with circular economy and green chemistry principles. Among various 2D materials, graphene oxide (GO) is considered an attractive material for numerous applications in physics, chemistry, biology, material sciences, and catalysis. Furthermore, graphene-based catalysts exhibit good catalytic activity toward the selective oxidation of benzyl alcohol to benzaldehyde or benzoic acid under eco-friendly conditions. In this regard, a theoretical investigation was carried out to study both catalytic oxidation reaction pathways (i.e., benzyl alcohols to aldehyde and to benzoic acid) using GO as an eco-friendly and metal-free catalyst. METHODS: In this study, we report a theoretical investigation at the B3LYP/6-31G level to better understand the oxidation of benzyl alcohol using GO as a metal-free catalyst. The possible bond formation was investigated using the global and local reactivity indexes derived from Fukui functions. Furthermore, we performed a non-covalent interaction (NCI) analysis to unveil the stability and the interaction nature between both reagents and GO surface. The effect of the solvent on the oxidation efficiency was also performed and the results indicate that the solvent significantly affects the decrease of reactivity by increasing the activation barriers through oxidation reactions of benzyl alcohol. Additionally, the electron localization function (ELF) analysis was performed for all intermediates showing the ionic nature of the studied epoxide structure of GO and rules out any type of covalent interaction during the oxidation reaction of benzyl alcohol. All these obtained results are in good agreement with experimental observations and reveal that the epoxide functions on the graphene surface promote an excellent catalyst turnover.

6.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298251

RESUMO

A new sustainable heterogeneous catalyst for copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC) was investigated. The preparation of the sustainable catalyst was carried out through the complexation reaction between the polysaccharide cellulose acetate backbone (CA) and copper(II) ions. The resulting complex [Cu(II)-CA] was fully characterized by using different spectroscopic methods such as Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Ultraviolet-visible (UV-vis), and Inductively Coupled Plasma (ICP) analyses. The Cu(II)-CA complex exhibits high activity in the CuAAC reaction for substituted alkynes and organic azides, leading to a selective synthesis of the corresponding 1,4-isomer 1,2,3-triazoles in water as a solvent and working at room temperature. It is worth noting that this catalyst has several advantages from the sustainable chemistry point of view including no use of additives, biopolymer support, reactions carried out in water at room temperature, and easy recovery of the catalyst. These characteristics make it a potential candidate not only for the CuAAC reaction but also for other catalytic organic reactions.


Assuntos
Cobre , Água , Cobre/química , Água/química , Reação de Cicloadição , Azidas/química , Alcinos/química , Catálise
7.
ACS Omega ; 7(50): 46731-46744, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570248

RESUMO

A series of new heterocycle hybrids incorporating pyrazole and isoxazoline rings was successfully synthesized, characterized, and evaluated for their antimicrobial responses. The synthesized compounds were obtained utilizing N-alkylation and 1,3-dipolar cycloaddition reactions, as well as their structures were established through spectroscopic methods and confirmed by mass spectrometry. To get more light on the regioselective synthesis of new hybrid compounds, mechanistic studies were performed using DFT calculations with B3LYP/6-31G(d,p) basis set. Additionally, the results of the preliminary screening indicate that some of the examined hybrids showed potent antimicrobial activity, compared to standard drugs. The results confirm that the antimicrobial activity is strongly dependent on the nature of the substituents linked pyrazole and isoxazoline rings. Furthermore, molecular docking studies were conducted to highlight the interaction modes between the investigated hybrid compounds and the Escherichia coli and Candida albicans receptors. Notably, the results demonstrate that the investigated compounds have strong protein binding affinities. The stability of the formed complexes by the binding between the hybrid compound 6c, and the target proteins was also confirmed using a 100 ns molecular dynamics simulation. Finally, the prediction of ADMET properties suggests that almost all hybrid compounds possess good pharmacokinetic profiles and no signs of observed toxicity, except for compounds 6e, 6f, and 6g.

8.
Gels ; 8(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36354622

RESUMO

The naturally occurring sodium alginate (SA) biopolymer from the Sargassum muticum (Yendo) Fensholt was employed as a green organocatalyst for the synthesis of 4H-pyran derivatives. The naturally extracted macromolecule was fully characterized using different analyses, including nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Energy Dispersive X-ray Analysis (EDX). The catalytic activity of SA was investigated in the one-pot reaction between aldehydes, malononitrile, and 1,3-dicarbonyl compounds in water at room temperature, and the corresponding 2-amino-3-cyano-4H-pyran derivatives were obtained with good to excellent yields. This organocatalyst was easily separated from the reaction mixture and reused for at least two consecutive cycles without a significant loss of its catalytic activity or selectivity. From the mechanistic point of view, density functional theory (DFT) and NCI analyses were performed for the first time to explain the regioselectivity outcomes for the synthesis of 2-amino-3-cyano-4H-pyran derivatives using SA as a green organocatalyst.

9.
J Mol Model ; 28(9): 250, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939130

RESUMO

Recently, fully π-functional two-dimensional (2D) materials have been reported for electronic device applications. Graphene is one of these 2D materials that is attributed to 2D electron confinement effects and exhibits an aromatic character; however, it is characterized by vanishing the bandgap energy. Hence, research was focused on the discovery of graphene-based 2D materials to reduce the bandgap energy. Herein, we investigate the silagraphene structures (SixCy) using DFT calculations to undertake and improve structural, physico-chemical, and electronic properties. Various types of 2D networks have been investigated by considering C-C and C-Si bonds in relative positions. Both conjugation and hyperconjugation phenomenon have been deeply examined and it seemed that they take advantage of each other depending on the C-C and C-Si bond positions. Localized orbital locator (LOL) and electron localization function (ELF) were also performed to examine the electronic densities in the investigated 2D networks and unveil the electronic properties of the studied materials.

10.
RSC Adv ; 12(18): 11139-11154, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35425079

RESUMO

Herein, a highly efficient magnetically separable hybrid GO/SrFe12O19 nanocomposite was synthesized via dispersing M-type strontium hexaferrite (SrFe12O19) on graphene oxide (GO) sheets. First, SrFe12O19 nanoparticles (NPs) and GO sheets were prepared via chemical coprecipitation and chemical oxidation of graphite powder, respectively. Chemically reduced GO (rGO) and rGO/SrFe12O19 were also prepared for comparison purposes. Thereafter, the prepared nanostructured materials were explored by XRD, FTIR, FESEM-EDX, BET, and Zetasizer analyses. All the characterizations confirm the nanoscale and the high stability structures of the prepared materials. The prepared hybrid magnetic nanocomposite GO/SrFe12O19 exhibited a high surface area value resulting in a high catalytic activity and selectivity for the epoxide ring-opening with amines in neat water. The use of hybrid GO/SrFe12O19 compared with pure SrFe12O19 and GO sheets is of great interest for using environmentally benign heterogeneous nanocatalysts, for the synthesis of ß-amino alcohols, with excellent recyclability under eco-friendly conditions. Moreover, a mechanistic study was performed through density functional theory (DFT) calculations and Parr functions to explain the observed reactivity and selectivity of SrFe-GO catalyst in the epoxide ring-opening reactions.

11.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216495

RESUMO

The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is considered to be the most representative ligation process within the context of the "click chemistry" concept. This CuAAC reaction, which yields compounds containing a 1,2,3-triazole core, has become relevant in the construction of biologically complex systems, bioconjugation strategies, and supramolecular and material sciences. Although many CuAAC reactions are performed under homogenous conditions, heterogenous copper-based catalytic systems are gaining exponential interest, relying on the easy removal, recovery, and reusability of catalytically copper species. The present review covers the most recently developed copper-containing heterogenous solid catalytic systems that use solid inorganic/organic hybrid supports, and which have been used in promoting CuAAC reactions. Due to the demand for 1,2,3-triazoles as non-classical bioisosteres and as framework-based drugs, the CuAAC reaction promoted by solid heterogenous catalysts has greatly improved the recovery and removal of copper species, usually by simple filtration. In so doing, the solving of the toxicity issue regarding copper particles in compounds of biological interest has been achieved. This protocol is also expected to produce a practical chemical process for accessing such compounds on an industrial scale.


Assuntos
Alcinos/química , Azidas/química , Cobre/química , Reação de Cicloadição/métodos , Catálise , Química Click/métodos , Triazóis/química
12.
J Biomol Struct Dyn ; 40(16): 7205-7217, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33719863

RESUMO

In the current study, natural (R)-carvone was used as starting material for the efficient synthesis of several 1,2,3-triazole derivatives. The produced products were obtained in good yields and characterized by 1H and 13C NMR and HRMS analysis. The newly synthesized monoterpenic 1,2,3-triazole 4 and derivatives were analyzed by viability tests (MTT) for their cytotoxic activity against three human cancer cells. Product 5 showed a medium antitumor activity, for which the IC50 values against selected cells HT-1080, A-549 and MCF-7 were 29.25 µM, 31.62 µM and 26.02 µM, respectively. The regioselectivity of the condensation reaction and the molecular structure of the title compounds were determined by Density Functional Theory (DFT) using B3LYP calculations at 6-311 + G(d,p) level. The orbitals HOMO and LUMO were studied to determine the electronic properties of the synthesized compounds. In addition, the global reactivity indices were used to explain the regioselectivity for the formation of compound 6, and the theoretical results agree well with the experimental results. Molecular docking and molecular dynamics confirmed the empirical test results and confirmed the stability of the complex during inhibition of the anti-apoptotic protein for killing cancer cells. Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Triazóis , Antineoplásicos/química , Monoterpenos Cicloexânicos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Triazóis/química , Triazóis/farmacologia
13.
Turk J Chem ; 46(2): 506-522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38143458

RESUMO

A novel bis-isoxazole was synthesized from (R)-Carvone and p-methylbenzaldoxime, via two successive [3+2] cycloaddition reactions (32CA). The newly obtained bis-isoxazole has been fully characterized by HRMS and NMR spectroscopy. The HMBC experiment was performed to determine the stereo and the regioselectivity of the reaction. The electrochemical behavior of the studied compound, in oxidation and reduction processes, was examined using the cyclic voltammetry technique. In addition, the regioselectivity of the [3+2] cycloaddition reaction and the molecular structure of the title compound was performed by density functional theory (DFT). The HOMO and LUMO orbitals were investigated to determine the electronic properties of the synthesized compound. Besides, the global reactivity indexes were used to explain the regioselectivity for the formation of the bis-isoxazole, the theoretical results are in good agreement with experimental findings.

14.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008481

RESUMO

This review accounts for the most recent and significant research results from the literature on the design and synthesis of 1,2,3-triazole compounds and their usefulness as molecular well-defined corrosion inhibitors for steels, copper, iron, aluminum, and their alloys in several aggressive media. Of particular interest are the 1,4-disubstituted 1,2,3-triazole derivatives prepared in a regioselective manner under copper-catalyzed azide-alkyne cycloaddition (CuAAC) click reactions. They are easily and straightforwardly prepared compounds, non-toxic, environmentally friendly, and stable products to the hydrolysis under acidic conditions. Moreover, they have shown a good efficiency as corrosion inhibitors for metals and their alloys in different acidic media. The inhibition efficiencies (IEs) are evaluated from electrochemical impedance spectroscopy (EIS) parameters with different concentrations and environmental conditions. Mechanistic aspects of the 1,2,3-triazoles mediated corrosion inhibition in metals and metal alloy materials are also overviewed.


Assuntos
Azidas/farmacologia , Metais/química , Triazóis/farmacologia , Azidas/química , Catálise , Química Click , Corrosão , Reação de Cicloadição , Estrutura Molecular , Propriedades de Superfície/efeitos dos fármacos , Triazóis/química
15.
RSC Adv ; 10(54): 32821-32832, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35516499

RESUMO

A novel sustainable hydrogel catalyst based on the reaction of sodium alginate naturally extracted from brown algae Laminaria digitata residue with copper(ii) was prepared as spherical beads, namely Cu(ii)-alginate hydrogel (Cu(ii)-AHG). The morphology and structural characteristics of these beads were elucidated by different techniques such as SEM, EDX, BET, FTIR and TGA analysis. Cu(ii)-AHG and its dried form, namely Cu(ii)-alginate (Cu(ii)-AD), are relatively uniform with an average pore ranging from 200 nm to more than 20 µm. These superporous structure beads were employed for the copper catalyzed [3 + 2] cycloaddition reaction of aryl azides and terminal aryl alkynes (CuAAC) via click chemistry at low catalyst loading, using water as a solvent at room temperature and pressure. The catalytic active copper(i) species was generated by the reduction of copper(ii) by terminal alkyne via the oxidative alkyne homocoupling reaction. The prepared catalysts were found to be efficient (85-92%) and regioselective by affording only 1,4-disubstituted-1,2,3-triazoles. They were also recoverable and reused in their dried form for at least four consecutive times without a clear loss of efficiency. A mechanistic study was performed through density functional theory (DFT) calculations in order to explain the regioselectivity outcome of Cu(ii)-alginate in CuAAC reactions. The analysis of the local electrophilicity (ω k) at the electrophilic reagent and the local nucleophilicity (N k) at the nucleophilic confirms the polar character of CuAAC. This catalyst has the main advantage of being sustainably ligand-free and recyclable.

16.
Front Chem ; 7: 81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30838201

RESUMO

1,4-Disubstituted-1,2,3-triazoles, considered as an important and useful class of heterocycles with potential applications in material science and biology, have been prepared in an efficient and selective manner by copper on carbon-catalyzed [3+2] cycloaddition reactions of azides and alkynes (CuAAC) in water under strict click chemistry conditions. Copper(I) catalysts heterogenized onto commercially activated carbon materials (Cu-CC) and on another carbon material produced from vegetable biomass using Argan nut shells (Cu-CANS) were found to be versatile catalytic sources for sustainable CuAAC. These copper on carbon supports were prepared and fully characterized by using two types of activated carbons that exhibit different porosity and specific surface. The delineation of the nature of the catalytic copper species and the role of the carbon support in the CuAAC were addressed. These heterogeneous copper on carbon catalysts were recovered and reused until ten catalytic runs without any noticeable loss of activity.

17.
Int J Biol Macromol ; 119: 849-856, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30081123

RESUMO

Naturally-occurring cellulose has been employed as a bio-support macromolecule for the immobilization of either copper(I) or copper(II) ions in order to click azide and alkyne derivatives in water. Under such a click regime, 1,4-disubstitued-1,2,3-triazoles were obtained regioselectively in excellent yields at room temperature. The reaction work-up is simple and the bio-heterogeneous catalyst that has been fully characterized by AAS, SEM, EDX and FT-IR can be easily separated and reused at least five times without any significant decrease in its activity and selectivity, particularly in the case of the very stable CuI-Cellulose.


Assuntos
Alcinos/química , Azidas/química , Celulose/química , Química Click , Cobre/química , Reação de Cicloadição , Catálise , Celulose/síntese química , Celulose/ultraestrutura , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
18.
RSC Adv ; 8(14): 7670-7678, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35539150

RESUMO

The copper(i) catalyzed azide-alkyne [3 + 2] cycloaddition (32CA) reaction and its uncatalyzed version have been studied for systematic understanding of this relevant organic transformation, using DFT calculations at the B3LYP/6-31G(d) (LANL2DZ for Cu) computational levels. In the absence of a copper(i) catalyst, two regioisomeric reaction paths were studied, indicating that the 32CA reaction takes place through an asynchronous one-step mechanism with a very low polar character. The two reactive channels leading to 1,4- and 1,5-regisomer present similar high activation energies of 18.84 and 18.51 kcal mol-1, respectively. The coordination of copper(i) to alkyne produces relevant changes in this 32CA reaction. Analysis of the global and local electrophilicity/nucleophilicity allows explaining correctly the behaviors of the copper(i) catalyzed cycloaddition. Coordination of the copper to alkyne changes the mechanism from a non-polar one-step mechanism to a polar stepwise one, as a consequence of the high nucleophilic character of the dinuclear Cu(i)-acetylide complex. Parr and Fukui functions and Dual Descriptor correctly explain the observed regioselectivity by means of the most favorable two-center interaction that takes place along the 1,4 reaction path.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...