Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(24): e2401258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38650122

RESUMO

Electrochemical reactions are the unrivaled backbone of next-generation energy storage, energy conversion, and healthcare devices. However, the real-time visualization of electrochemical reactions remains the bottleneck for fully exploiting their intrinsic potential. Herein, for the first time, a universal approach to direct spatiotemporal-dynamic in situ optical visualization of pH-based as well as specific byproduct-based electrochemical reactions is performed. As a highly relevant and impactful example, in-operando optical visualization of on-catalyst water splitting processes is performed in neutral water/seawater. HPTS (8-hydroxypyrene-1,3,6-trisulfonicacid), known for its exceptional optical capability of detecting even the tiniest pH changes allows the unprecedented "spatiotemporal" real-time visualization at the electrodes. As a result, it is unprecedentedly revealed that at a critical cathode-to-anode distance, the bulk-electrolyte "self-neutralization" phenomenon can be achieved during the water splitting process, leading to the practical realization of enhanced additive-free neutral water splitting. Furthermore, it is experimentally unveiled that at increasing electrolyte flow rates, a swift and severe inhibition of the concomitantly forming acidic and basic 'fronts', developed at anode and cathode compartments are observed, thus acting as a "buffering" mechanism. To demonstrate the universal applicability of this elegant strategy which is not limited to pH changes, the technique is extended to visualization of hypochlorite/ chlorine at the anode during electrolysis of sea water using N-(4-butanoic acid) dansylsulfonamide (BADS). Thus, a unique experimental tool that allows real-time spatiotemporal visualization and simultaneous mechanistic investigation of complex electrochemical processes is developed that can be universally extended to various fields of research.

2.
Mater Horiz ; 11(1): 184-195, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37937438

RESUMO

Gas sensors based on tin dioxide (SnO2) for the detection of ammonia (NH3) have become commercially available for environmental monitoring due to their reactive qualities when exposed to different gaseous pollutants. Nevertheless, their implementation in the medical field has been hindered by certain inherent drawbacks, such as needing to operate at high temperatures, lack of selectivity, unreliable operation under high-humidity conditions, and a lower detection limit. To counter these issues, this study created 2D nanosheets of SnO2 through an optimized solvothermal method. It was found that tuning the precursor solution's pH to either neutral or 14 led to aggregated or distributed, uniform-size nanosheets with a higher crystallinity, respectively. Remarkably, the SnO2 nanosheet sensor (SNS-14) displayed a much lower response to water molecules and specific reactivity to ammonia even when subjected to reducing and oxidizing agents at 25 °C due to the micropores and chemisorbed oxygen on the nanosheets. Furthermore, the SNS-14 was seen to have the highest sensitivity to ammonia at 100 ppm, with rapid response (8 s) and recovery times (55 s) even at a high relative humidity of 70%. Its theoretical detection limit was recorded to be 64 ppt, better than any of the earlier SnO2-based chemiresistive sensors. Its exceptional sensing abilities were credited to its optimal crystallinity, specific surface area, defects, chemisorbed oxygen, and porous structure. NH3-TPD measurements and computational simulations were employed to understand the ammonia interaction with atomistic details on the SnO2 nanosheet surface. A real time breath sensing experiment was simulated to test the efficacy of the sensor. Reaching this advancement is an achievement in bypassing past boundaries of SnO2-centered sensors, making it feasible to detect ammonia with enhanced precision, discrimination, dependability, and velocity for probable usages in medical diagnostics and ecological surveillance.

3.
ACS Appl Mater Interfaces ; 15(4): 5512-5520, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651864

RESUMO

Xylene is one of the representative indoor pollutants, even in ppb levels, that affect human health directly. Due to the non-polar and less reactive nature of xylene, its room temperature detection is challenging. This work demonstrates a metallic tin-doped Sn-SnO2 nanocomposite under controlled pH conditions via a simple solvothermal route. The Sn nanoparticles are uniformly distributed inside the SnO2 nanospheres of ∼70 nm with a high specific surface area of 118.8 m2/g. The surface of the Sn-SnO2 nanocomposite exhibits strong affinity toward benzene, toluene, ethylbenzene, and xylene (BTEX) compared to other polar volatile organic compounds (VOCs) such as ethanol, acetone, isopropyl alcohol, formaldehyde, and chloroform tested in this study. The sensor's response is highest for xylene among BTEX molecules. Under ambient room temperature conditions, the sensor exhibits a linear response to xylene in the 1-100 ppm range with a sensitivity of ∼255% at 60 ppm within ∼1.5 s and recovers in ∼40 s. The sensor is hardly affected by humidity variations (40-70%), leading to enhanced reliability and repeatability under dynamic environmental conditions. The meso and microporous nanosphere morphology act as a nanocontainer for non-polar VOCs to diffuse inside the nanostructures, providing easy accessibility. The metallic Sn increases the affinity for less reactive xylene at room temperature. Thus, the nanocatalytic Sn-SnO2 nanocomposite is an active gas/VOC sensing material and provides an effective solution for sensing major indoor pollutants under humid conditions.

4.
Adv Sci (Weinh) ; 9(36): e2203678, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36366929

RESUMO

Efficient neutral water splitting may represent in future a sustainable solution to unconstrained energy requirements, but yet necessitates the development of innovative avenues for achieving the currently unmet required performances. Herein, a novel paradigm based on the combination of electronic structure engineering and surface morphology tuning of earth-abundant 3D-hierarchical binder-free electrocatalysts is demonstrated, via a scalable single-step thermal transformation of nickel substrates under sulfur environment. A temporal-evolution of the resulting 3D-nanostructured substrates is performed for the intentional enhancement of non-abundant highly-catalytic Ni3+ and pSn 2- species on the catalyst surface, concomitantly accompanied with densification of the hierarchical catalyst morphology. Remarkably, the finely engineered NiSx catalyst synthesized via thermal-evolution for 24 h (NiSx -24 h) exhibits an exceptionally low cell voltage of 1.59 V (lower than Pt/C-IrO2  catalytic couple) for neutral water splitting, which represents the lowest value ever reported. The enhanced performance of NiSx -24 h is a multi-synergized consequence of the simultaneous enrichment of oxygen and hydrogen evolution reaction catalyzing species, accompanied by an optimum electrocatalytic surface area and intrinsic high conductivity. Overall, this innovative work opens a route to engineering the active material's electronic structure/morphology, demonstrating novel Ni3+ /pSn 2- -enriched NiSx catalysts which surpass state-of-the-art materials for neutral water splitting.

5.
Small Methods ; 6(6): e2200181, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35491235

RESUMO

Hydrogen, undoubtedly the next-generation fuel for supplying the world's energy demands, needs economically scalable bifunctional electrocatalysts for its sustainable production. Non-noble transition metal-based electrocatalysts are considered an economic solution for water splitting applications. A single-step solid-state approach for the economically scalable transformation of Ni-based substrates into single-crystalline nickel sulfide nanoplate arrays is developed. X-ray diffraction and transmission electron microscopy measurements reveal the influence of the transformation temperature on the crystal growth direction, which in turn can manipulate the chemical state at the catalyst surface. Ni-based sulfide formed at 450 °C exhibits an enhanced concentration of electrocatalytically-active Ni3+ at their surface and a reduced electron density around sulfur atoms, optimal for efficient H2 production. The Ni-based sulfide electrocatalysts display exceptional electrocatalytic performance for both oxygen and hydrogen evolution, with overpotentials of 170 and 90 mV respectively. Remarkably, the two-electrode cell for overall electrolysis of alkaline water demonstrates an ultra-low cell potential of 1.46 V at 10 mA cm-2 and 1.69 V at 100 mA cm-2 . In addition to the exceptionally low water-splitting cell voltage, this self-standing electrocatalyst is of binderfree nature, with the electrode preparation being a low-cost and single-step process, easily scalable to industrial scales.

6.
ACS Appl Mater Interfaces ; 12(48): 54203-54211, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33206506

RESUMO

Fabrication protocols of transparent conducting electrodes (TCEs), including those which produce TCEs of high values of figure of merit, often fail to address issues of scalability, stability, and cost. When it comes to working with high-temperature stable electrodes, one is left with only one and that too, an expensive choice, namely, fluorine-doped SnO2 (FTO). It is rather difficult to replace FTO with a low-cost TCE due to stability issues. In the present work, we have shown that an Al nanomesh fabricated employing the crack template method exhibits extreme thermal stability in air even at 500 °C, compared with that of FTO. In order to fill in the non-conducting island regions present in between the mesh wires, a moderately conducting material SnO2 layer was found adequate. The innovative step employed in the present work relates to the SnO2 deposition without damaging the underneath Al, which is a challenge in itself, as the commonly used precursor, SnCl2 solution, is quite corrosive toward Al. Optimization of spray coating of the precursor while the Al mesh on a glass substrate held at an appropriate temperature was the key to form a stable hybrid electrode. The resulting Al/SnO2 electrode exhibited an excellent transparency of ∼83% at 550 nm and a low sheet resistance of 5.5 Ω/□. SnO2 coating additionally made the TCE scratch-proof and mechanically stable, as the adhesion tape test showed only 8% change in sheet resistance after 1000 cycles. Further, to give FTO-like surface finish, the SnO2 surface was fluorinated by treating with a Selectfluor solution. As a result, the Al/F-SnO2 hybrid film exhibited one order higher surface conductivity with negligible sensitivity toward humidity and volatile organics, while becoming robust toward neutral electrochemical environments. Finally, a custom-designed projection lithography technique was used to pixelate the Al/SnO2 hybrid film for optoelectronic device applications.

7.
ACS Appl Mater Interfaces ; 12(33): 37320-37329, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814406

RESUMO

Transparent electronics continues to revolutionize the way we perceive futuristic devices to be. In this work, we propose a technologically advanced volatile organic compound (VOC) sensor in the form of a thin-film transparent display fabricated using fluorinated SnO2 films. A solution-processed method for surface fluorination of SnO2 films using Selectfluor as a fluorinating agent has been developed. The doped fluorine was optimized to be <1%, resulting in a significant increase in conductivity and reduction in persistent photoconductivity accompanied by a faster decay of the photogenerated charge carriers. A combination of these modified properties, together with the intrinsic sensing ability of SnO2, was exploited in designing a transparent display sensor for ppm-level detection of VOCs at an operating temperature of merely 150 °C. Even a transparent metal mesh heater is integrated with the sensor for ease of operation, portability, and less power usage. A sensor reset method is developed while shortening the UV exposure time, enabling complete sensor recovery at low operating temperatures. The sensor is tested toward a variety of polar and nonpolar VOCs (amines, alcohols, carbonyls, alkanes, halo-alkanes, and esters), and it exhibits an easily differentiable response with sensitivity in line with the electron-donating tendency of the functional group present. This work opens up the door for multiplexed sensor arrays with the ability to detect and analyze multiple VOCs with specificity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...