Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 256: 119060, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38751001

RESUMO

Black phosphorus nanosheets (BPNs)/CdS heterostructure was successfully synthesized via hydrothermal method. The experimental results indicated that BPNs modified the surface of CdS nanoparticles uniformly. Meanwhile, the BPNs/CdS heterostructure exhibited a distinguished high rate of photocatalytic activity for Tetrabromobisphenol A (TBBPA) degradation under visible light irradiation (λ > 420 nm), the kinetic constant of TBBPA degradation reached 0.0261 min-1 was approximately 5.68 and 9.67 times higher than that of CdS and P25, respectively. Moreover, superoxide radical (•O2-) is the main active component in the degradation process of TBBPA (the relative contribution is 91.57%). The photocatalytic mechanism and intermediates of the TBBPA was clarified, and a suitable model and pathway for the degradation of TBBPA were proposed. The results indicated that the toxicities of some intermediates were higher than the parent pollutant. This research provided an efficient approach by a novel photocatalyst for the removal of TBBPA from wastewater, and the appraisal methods for the latent risks from the intermediates were reported in this paper.


Assuntos
Fósforo , Bifenil Polibromatos , Bifenil Polibromatos/química , Bifenil Polibromatos/efeitos da radiação , Fósforo/química , Compostos de Cádmio/química , Sulfetos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Catálise , Fotólise
2.
New Phytol ; 242(3): 960-974, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402527

RESUMO

The link between above- and belowground communities is a key uncertainty in drought and rewetting effects on forest carbon (C) cycle. In young beech model ecosystems and mature naturally dry pine forest exposed to 15-yr-long irrigation, we performed 13C pulse labeling experiments, one during drought and one 2 wk after rewetting, tracing tree assimilates into rhizosphere communities. The 13C pulses applied in tree crowns reached soil microbial communities of the young and mature forests one and 4 d later, respectively. Drought decreased the transfer of labeled assimilates relative to the irrigation treatment. The 13C label in phospholipid fatty acids (PLFAs) indicated greater drought reduction of assimilate incorporation by fungi (-85%) than by gram-positive (-43%) and gram-negative bacteria (-58%). 13C label incorporation was more strongly reduced for PLFAs (cell membrane) than for microbial cytoplasm extracted by chloroform. This suggests that fresh rhizodeposits are predominantly used for osmoregulation or storage under drought, at the expense of new cell formation. Two weeks after rewetting, 13C enrichment in PLFAs was greater in previously dry than in continuously moist soils. Drought and rewetting effects were greater in beech systems than in pine forest. Belowground C allocation and rhizosphere communities are highly resilient to drought.


Assuntos
Pinus , Resiliência Psicológica , Ecossistema , Rizosfera , Resistência à Seca , Solo , Florestas , Carbono/metabolismo , Árvores/fisiologia , Secas , Ácidos Graxos/metabolismo , Fosfolipídeos/metabolismo , Pinus/metabolismo , Microbiologia do Solo
3.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366058

RESUMO

Ongoing global warming is expected to augment soil respiration by increasing the microbial activity, driving self-reinforcing feedback to climate change. However, the compensatory thermal adaptation of soil microorganisms and substrate depletion may weaken the effects of rising temperature on soil respiration. To test this hypothesis, we collected soils along a large-scale forest transect in eastern China spanning a natural temperature gradient, and we incubated the soils at different temperatures with or without substrate addition. We combined the exponential thermal response function and a data-driven model to study the interaction effect of thermal adaptation and substrate availability on microbial respiration and compared our results to those from two additional continental and global independent datasets. Modeled results suggested that the effect of thermal adaptation on microbial respiration was greater in areas with higher mean annual temperatures, which is consistent with the compensatory response to warming. In addition, the effect of thermal adaptation on microbial respiration was greater under substrate addition than under substrate depletion, which was also true for the independent datasets reanalyzed using our approach. Our results indicate that thermal adaptation in warmer regions could exert a more pronounced negative impact on microbial respiration when the substrate availability is abundant. These findings improve the body of knowledge on how substrate availability influences the soil microbial community-temperature interactions, which could improve estimates of projected soil carbon losses to the atmosphere through respiration.


Assuntos
Microbiologia do Solo , Solo , Solo/química , Aquecimento Global , Mudança Climática , Temperatura , Respiração , Carbono
4.
Glob Chang Biol ; 30(1): e17156, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273526

RESUMO

Evidence is emerging that microbial products and residues (necromass) contribute greatly to stable soil organic matter (SOM), which calls for the necessity of separating the microbial necromass from other SOM pools in models. However, the understanding on how microbial necromass stabilizes in soil, especially the mineral protection mechanisms, is still lacking. Here, we incubated 13 C- and 15 N-labelled microbial necromass in a series of artificial soils varying in clay minerals and metal oxides. We found the mineralization, adsorption and desorption rate constants of necromass nitrogen were higher than those of necromass carbon. The accumulation rates of necromass carbon and nitrogen in mineral-associated SOM were positively correlated with the specific surface area of clay minerals. Our results provide direct evidence for the protection role of mineral in microbial necromass stabilization and provide a platform for simulating microbial necromass separately in SOM models.


Assuntos
Carbono , Solo , Solo/química , Nitrogênio , Argila , Minerais/química , Isótopos , Microbiologia do Solo
5.
Ecol Lett ; 27(1): e14346, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009408

RESUMO

Nitrogen (N) resorption is an important pathway of N conservation, contributing to an important proportion of plant N requirement. However, whether the ratio of N resorption to N requirement may be affected by environmental factors, mycorrhizal types or atmospheric CO2 concentration remains unclear. Here, we conducted a meta-analysis on the impacts of environmental factors and mycorrhizal types on this ratio. We found this ratio in ectomycorrhizal (EM) trees decreased with mean annual precipitation, mean annual temperature, soil total N content and atmospheric CO2 concentration and was significantly lower than that in arbuscular mycorrhizal (AM) trees. An in situ 15 N tracing experiment further confirmed that AM trees have a stronger reliance on N resorption than EM trees. Our study suggests that AM and EM trees potentially have different strategies for alleviation of progressive N limitation, highlighting the necessity of incorporating plant mycorrhizal types into Earth System Models.


Assuntos
Micorrizas , Árvores , Nitrogênio/metabolismo , Dióxido de Carbono/metabolismo , Plantas , Solo , Microbiologia do Solo , Florestas , Raízes de Plantas/metabolismo
6.
Glob Chang Biol ; 29(22): 6350-6366, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602716

RESUMO

Long-term carbon and nitrogen dynamics in peatlands are affected by both vegetation production and decomposition processes. Here, we examined the carbon accumulation rate (CAR), nitrogen accumulation rate (NAR) and δ13 C, δ15 N of plant residuals in a peat core dated back to ~8500 cal year BP in a temperate peatland in Northeast China. Impacted by the tephra during 1160 and 789 cal year BP and climate change, the peatland changed from a fen dominated by vascular plants to a bog dominated by Sphagnum mosses. We used the Clymo model to quantify peat addition rate and decay constant for acrotelm and catotelm layers during both bog and fen phases. Our studied peatland was dominated by Sphagnum fuscum during the bog phase (789 to -59 cal year BP) and lower accumulation rates in the acrotelm layer was found during this phase, suggesting the dominant role of volcanic eruption in the CAR of the peat core. Both mean CAR and NAR were higher during the bog phase than during the fen phase in our study, consistent with the results of the only one similar study in the literature. Because the input rate of organic matter was considered to be lower during the bog phase, the decomposition process must have been much lower during the bog phase than during the fen phase and potentially controlled CAR and NAR. During the fen phase, CAR was also lower under higher temperature and summer insolation, conditions beneficial for decomposition. δ15 N of Sphagnum hinted that nitrogen fixation had a positive effect on nitrogen accumulation, particular in recent decades. Our study suggested that decomposition is more important for carbon and nitrogen sequestration than production in peatlands in most conditions and if future climate changes or human disturbance increase decomposition rate, carbon sequestration in peatlands will be jeopardized.


Assuntos
Carbono , Sphagnopsida , Humanos , Áreas Alagadas , Nitrogênio/análise , Plantas , Solo
8.
Glob Chang Biol ; 29(7): 1939-1950, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36585918

RESUMO

Whether nitrogen (N) availability will limit plant growth and removal of atmospheric CO2 by the terrestrial biosphere this century is controversial. Studies have suggested that N could progressively limit plant growth, as trees and soils accumulate N in slowly cycling biomass pools in response to increases in carbon sequestration. However, a question remains over whether longer-term (decadal to century) feedbacks between climate, CO2 and plant N uptake could emerge to reduce ecosystem-level N limitations. The symbioses between plants and microbes can help plants to acquire N from the soil or from the atmosphere via biological N2 fixation-the pathway through which N can be rapidly brought into ecosystems and thereby partially or completely alleviate N limitation on plant productivity. Here we present measurements of plant N isotope composition (δ15 N) in a peat core that dates to 15,000 cal. year BP to ascertain ecosystem-level N cycling responses to rising atmospheric CO2 concentrations. We find that pre-industrial increases in global atmospheric CO2 concentrations corresponded with a decrease in the δ15 N of both Sphagnum moss and Ericaceae when constrained for climatic factors. A modern experiment demonstrates that the δ15 N of Sphagnum decreases with increasing N2 -fixation rates. These findings suggest that plant-microbe symbioses that facilitate N acquisition are, over the long term, enhanced under rising atmospheric CO2 concentrations, highlighting an ecosystem-level feedback mechanism whereby N constraints on terrestrial carbon storage can be overcome.


Assuntos
Ecossistema , Nitrogênio , Nitrogênio/análise , Carbono/metabolismo , Dióxido de Carbono/fisiologia , Plantas/metabolismo , Solo
9.
Glob Chang Biol ; 28(22): 6728-6740, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35989426

RESUMO

Soil microbial biomass and microbial stoichiometric ratios are important for understanding carbon and nutrient cycling in terrestrial ecosystems. Here, we compiled data from 12245 observations of soil microbial biomass from 1626 published studies to map global patterns of microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), microbial biomass phosphorus (MBP), and their stoichiometry using a random forest model. Concentrations of MBC, MBN, and MBP were most closely linked to soil organic carbon, while climatic factors were most important for stoichiometry in microbial biomass ratios. Modeled seasonal MBC concentrations peaked in summer in tundra and in boreal forests, but in autumn in subtropical and in tropical biomes. The global mean MBC/MBN, MBC/MBP, and MBN/MBP ratios were estimated to be 10, 48, and 6.7, respectively, at 0-30 cm soil depth. The highest concentrations, stocks, and microbial C/N/P ratios were found at high latitudes in tundra and boreal forests, probably due to the higher soil organic matter content, greater fungal abundance, and lower nutrient availability in colder than in warmer biomes. At 30-100 cm soil depth, concentrations of MBC, MBN, and MBP were highest in temperate forests. The MBC/MBP ratio showed greater flexibility at the global scale than did the MBC/MBN ratio, possibly reflecting physiological adaptations and microbial community shifts with latitude. The results of this study are important for understanding C, N, and P cycling at the global scale, as well as for developing soil C-cycling models including soil microbial C, N, and P as important parameters.


Assuntos
Nitrogênio , Solo , Biomassa , Carbono/análise , China , Ecossistema , Nitrogênio/análise , Fósforo/análise , Microbiologia do Solo
10.
Tree Physiol ; 42(10): 1943-1956, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35535565

RESUMO

Carbon (C) allocation plays a crucial role for survival and growth of alpine treeline trees, however it is still poorly understood. Using in situ 13CO2 labeling, we investigated the leaf photosynthesis and the allocation of 13C labeled photoassimilates in various tissues (leaves, twigs and fine roots) in treeline trees and low-elevation trees. Non-structural carbohydrate concentrations were also determined. The alpine treeline trees (2000 m. a.s.l.), compared with low-elevation trees (1700 m a.s.l.), did not show any disadvantage in photosynthesis, but the former allocated proportionally less newly assimilated C belowground than the latter. Carbon residence time in leaves was longer in treeline trees (19 days) than that in low-elevation ones (10 days). We found an overall lower density of newly assimilated C in treeline trees. The alpine treeline trees may have a photosynthetic compensatory mechanism to counteract the negative effects of the harsh treeline environment (e.g., lower temperature and shorter growing season) on C gain. Lower temperature at treeline may limit the sink activity and C downward transport via phloem, and shorter treeline growing season may result in early cessation of root growth, decreases sink strength, which all together lead to lower density of new C in the sink tissues and finally limit the growth of the alpine treeline trees.


Assuntos
Altitude , Árvores , Carboidratos , Carbono , Fotossíntese
11.
Nat Commun ; 13(1): 880, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169118

RESUMO

The impacts of enhanced nitrogen (N) deposition on the global forest carbon (C) sink and other ecosystem services may depend on whether N is deposited in reduced (mainly as ammonium) or oxidized forms (mainly as nitrate) and the subsequent fate of each. However, the fates of the two key reactive N forms and their contributions to forest C sinks are unclear. Here, we analyze results from 13 ecosystem-scale paired 15N-labelling experiments in temperate, subtropical, and tropical forests. Results show that total ecosystem N retention is similar for ammonium and nitrate, but plants take up more labelled nitrate ([Formula: see text]%) ([Formula: see text]) than ammonium ([Formula: see text]%) while soils retain more ammonium ([Formula: see text]%) than nitrate ([Formula: see text]%). We estimate that the N deposition-induced C sink in forests in the 2010s  is [Formula: see text] Pg C yr-1, higher than previous estimates because of a larger role for oxidized N and greater rates of global N deposition.


Assuntos
Compostos de Amônio/análise , Sequestro de Carbono/fisiologia , Recuperação e Remediação Ambiental , Florestas , Nitratos/análise , Árvores/metabolismo , Meio Ambiente , Isótopos de Nitrogênio/química , Óxidos de Nitrogênio/análise , Solo/química
12.
J Fluoresc ; 32(2): 669-680, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35040029

RESUMO

In this work, a convenient and dual-signal readout optical sensing platform for the sensitively and selectively determination of beta-glucosidase (ß-Glu) activity was reported using protein-inorganic hybrid nanoflowers [BSA-Cu3(PO4)2·3H2O] possessing peroxidase-mimicking activity. The nanoflowers (NFs) were facilely synthesized through a self-assembled synthesis strategy at room temperature. The as-prepared NFs could catalytically convert the colorless and non-fluorescent Amplex Red into colored and highly fluorescent resorufin in the presence of hydrogen peroxide via electron transfer process. ß-Glu could hydrolyze cyanogenic glycoside, using amygdalin (Amy) as a model, into cyanide ions (CN-), which can subsequently efficiently suppress the catalytic activity of NFs, accompanied with the fluorescence decrease and the color fading. The concentration of CN- was controlled by ß-Glu-triggered enzymatic reaction of Amy. Thus, a sensing system was established for fluorescent and visual determination of ß-Glu activity. Under the optimum conditions, the present fluorescent and visual bimodal sensing platform exhibited good sensitivity for ß-Glu activity assay with a detection limit of 0.33 U·L-1. The sensing platform was further applied to determinate ß-Glu in real samples and satisfactory results were attained. Additionally, the optical sensing system can potentially be a promising candidate for ß-Glu inhibitors screening.


Assuntos
Técnicas Biossensoriais/métodos , Nanoestruturas , Espectrometria de Fluorescência , beta-Glucosidase/análise , Peróxido de Hidrogênio , Oxazinas/química , Sensibilidade e Especificidade
13.
Sci Total Environ ; 813: 151907, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34838545

RESUMO

Global atmospheric CO2 keeps rising and brings about significant effects on ecosystem carbon (C) cycling by altering C processes in soils. Soil C responses to elevated CO2 are highly uncertain, and how elevated CO2 interacts with other factors, such as nitrogen (N) availability, to influence soil C flux comprises an important source of this uncertainty, especially for those under-studied ecosystems. By conducting a manipulated CO2 concentration and N availability experiment on typical alpine grassland (4600 m asl), we combined the five-year in-situ measurement of soil respiration (SR) with an incubation experiment of microbial metabolic efficiency in the lab to explore the response of SR to elevated CO2 and N availability. The results showed that elevated CO2 at ambient N conditions and enriched N equally stimulated SR during the experimental period, whereas N supply had no significant effect. Elevated CO2 enhanced soil dissolved organic C and enzyme activity, while had marginal effects on microbial biomass and C use efficiency (CUE). Strengthened microbial activity dominated SR stimulation under elevated CO2. Enriched N boosted enzyme activity and microbial CUE. N availability played divergent roles in mediating SR. The negliable regulation of N supply on elevated CO2 effects on SR was the offset consequences of the negative impacts of enhanced CUE and the positive contribution of heightened enzyme activity. Our findings suggest that rising CO2 would accelerate soil C cycling of the alpine grassland under various N regimes by stimulating microbial activity instead of lowering microbial metabolic efficiency. Such results are crucial for understanding the role of alpine ecosystems in the global C cycle.


Assuntos
Ecossistema , Solo , Biomassa , Carbono , Dióxido de Carbono/análise , Nitrogênio/análise , Respiração , Microbiologia do Solo
14.
Sci Total Environ ; 793: 148567, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175599

RESUMO

As an important factor regulating soil carbon cycle, freeze-thaw cycle significantly affects winter soil respiration in temperate regions. However, few in situ studies have been carried out to evaluate the effect of freeze-thaw cycle on soil respiration. Here, a field experiment was conducted to explore the response of winter soil respiration to freeze-thaw cycle and the underlying mechanisms in larch and Chinese pine plantation forests in a mid-temperate region. These results indicated that CO2 emissions during the freeze-thaw period accounted for 18.89-18.94% and 0.79-1.00% of the cumulative winter CO2 emissions and the annual soil CO2 emissions, respectively. Soil respiration rates during the thawing phase were 1.54-3.95 times higher than those during the freezing phase, which was mainly due to the increase of soil microbial biomass upon thawing. This effect declined during the second freeze-thaw cycle compared to the first freeze-thaw cycle due to the exhaustion of resources for microbes. The different responses of soil CO2 flux to freeze-thaw cycle between the two types of forests were mainly because of the difference in the thickness of litter layer, which plays an important role in regulating soil temperature and enzyme activity. These results suggest the intensity and frequency of freeze-thaw cycle strongly affect soil carbon emissions during the freeze-thaw cycle period. Therefore, these factors should be considered in laboratory studies and model simulations under climate change scenarios.


Assuntos
Florestas , Solo , Congelamento , Respiração , Estações do Ano
15.
Environ Sci Technol ; 55(11): 7721-7730, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33973762

RESUMO

Nitrification and immobilization compete for soil ammonium (NH4+); the relative dominance of these two processes has been suggested to reflect the potential risk of nitrogen loss from soils. Here, we compiled a database and developed a stochastic gradient boosting model to predict the global potential risk of nitrogen loss based on the ratio of nitrification to immobilization (N/I). We then conducted a meta-analysis to evaluate the effects of common management practices on the N/I ratio. The results showed that the soil N/I ratio varied with climate zones and land use. Soil total carbon, total nitrogen, pH, fertilizer nitrogen application rate, mean annual temperature, and mean annual precipitation are important factors of soil N/I ratio. Meta-analysis indicated that biochar, straw, and nitrification inhibitor application reduced the soil N/I ratio by 67, 64, and 78%, respectively. Returning plantation to forest and cropland to grassland decreased the soil N/I ratio by 88 and 45%, respectively. However, fertilizer nitrogen application increased the soil N/I ratio by 92%. Our study showed that the soil N/I ratio and its associated risk level of nitrogen loss were highly related to long-term soil and environmental properties with high spatial heterogeneity.


Assuntos
Nitrificação , Nitrogênio , Fertilizantes/análise , Florestas , Nitrogênio/análise , Solo , Microbiologia do Solo
16.
Glob Chang Biol ; 27(11): 2491-2506, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33739617

RESUMO

Above and belowground compartments in ecosystems are closely coupled on daily to annual timescales. In mature forests, this interlinkage and how it is impacted by drought is still poorly understood. Here, we pulse-labelled 100-year-old trees with 13 CO2 within a 15-year-long irrigation experiment in a naturally dry pine forest to quantify how drought regime affects the transfer and use of assimilates from trees to the rhizosphere and associated microbial communities. It took 4 days until new 13 C-labelled assimilates were allocated to the rhizosphere. One year later, the 13 C signal of the 3-h long pulse labelling was still detectable in stem and soil respiration, which provides evidence that parts of the assimilates are stored in trees before they are used for metabolic processes in the rhizosphere. Irrigation removing the natural water stress reduced the mean C residence time from canopy uptake until soil respiration from 89 to 40 days. Moreover, irrigation increased the amount of assimilates transferred to and respired in the soil within the first 10 days by 370%. A small precipitation event rewetting surface soils altered this pattern rapidly and reduced the effect size to +35%. Microbial biomass incorporated 46 ± 5% and 31 ± 7% of the C used in the rhizosphere in the dry control and irrigation treatment respectively. Mapping the spatial distribution of soil-respired 13 CO2 around the 10 pulse-labelled trees showed that tree rhizospheres extended laterally 2.8 times beyond tree canopies, implying that there is a strong overlap of the rhizosphere among adjacent trees. Irrigation increased the rhizosphere area by 60%, which gives evidence of a long-term acclimation of trees and their rhizosphere to the drought regime. The moisture-sensitive transfer and use of C in the rhizosphere has consequences for C allocation within trees, soil microbial communities and soil carbon storage.


Assuntos
Secas , Árvores , Carbono , Dióxido de Carbono , Pegada de Carbono , Ecossistema , Florestas , Solo
17.
ISME J ; 15(8): 2248-2263, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33619354

RESUMO

During the decomposition process of soil organic carbon (SOC), microbial products such as microbial necromass and microbial metabolites may form an important stable carbon (C) pool, called microbially derived C, which has different decomposition patterns from plant-derived C. However, current Earth System Models do not simulate this microbially derived C pool separately. Here, we incorporated the microbial necromass pool to the first-order kinetic model and the Michaelis-Menten model, respectively, and validated model behaviors against previous observation data from the decomposition experiments of 13C-labeled necromass. Our models showed better performance than existing models and the Michaelis-Menten model was better than the first-order kinetic model. Microbial necromass C was estimated to be 10-27% of total SOC in the study soils by our models and therefore should not be ignored. This study provides a novel modification to process-based models for better simulation of soil organic C under the context of global changes.


Assuntos
Carbono , Solo , Ciclo do Carbono , Cinética , Microbiologia do Solo
18.
Glob Chang Biol ; 27(10): 2039-2048, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33559308

RESUMO

Optimal methods for incorporating soil microbial mechanisms of carbon (C) cycling into Earth system models (ESMs) are still under debate. Specifically, whether soil microbial physiology parameters and residual materials are important to soil organic C (SOC) content is still unclear. Here, we explored the effects of biotic and abiotic factors on SOC content based on a survey of soils from 16 locations along a ~4000 km forest transect in eastern China, spanning a wide range of climate, soil conditions, and microbial communities. We found that SOC was highly correlated with soil microbial biomass C (MBC) and amino sugar (AS) concentration, an index of microbial necromass. Microbial C use efficiency (CUE) was significantly related to the variations in SOC along this national-scale transect. Furthermore, the effect of climatic and edaphic factors on SOC was mainly via their regulation on microbial physiological properties (CUE and MBC). We also found that regression models on explanation of SOC variations with microbial physiological parameters and AS performed better than the models without them. Our results provide the empirical linkages among climate, microbial characteristics, and SOC content at large scale and confirm the necessity of incorporating microbial biomass and necromass pools in ESMs under global change scenarios.


Assuntos
Carbono , Solo , Carbono/análise , China , Florestas , Microbiologia do Solo
19.
Sci Total Environ ; 757: 143724, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33221010

RESUMO

High species diversity is generally thought to be a requirement for sustaining forest multifunctionality. However, the degree to which the relationship between species-, structural-, and trait-diversity of forests and multifunctionality depend on the context (such as stand age or abiotic conditions) is not well studied. Here, we hypothesized that context-dependency of tree species diversity, functional trait composition and stand structural attributes promote temperate forest multifunctionality including above- and below-ground multiple and single functions. To do so, we used repeated forest inventory data, from temperate mixed forests of northeast China, to quantify two above-ground (i.e. coarse woody productivity and wild edible plant biomass), five below-ground (i.e. soil organic carbon, total soil nitrogen, potassium, phosphorus and sulfur) functions, tree species diversity, individual tree size variation (CVDBH) and functional trait composition of specific leaf area (CWMSLA) as well as stand age and abiotic conditions. We found that tree species diversity increased forest multifunctionality and most of the single functions. Below-ground single and multifunctionality were better explained by tree species diversity. In contrast, above-ground single and multifunctionality were better explained by CVDBH. However, CWMSLA was also an additional important driver for maintaining above- and below-ground forest multifunctionality through opposing plant functional strategies. Stand age markedly reduced forest multifunctionality, tree species diversity and CWMSLA but substantially increased CVDBH. Below-ground forest multifunctionality and tree species diversity decreased while above-ground forest multifunctionality increased on steep slopes. These results highlight that context-dependency of forest diversity attributes might regulate forest multifunctionality but may not have a consistent effect on above-ground and below-ground forest multifunctionality due to the fact that those functions were driven by varied functional strategies of different plant species. We argue that maximizing forest complexity could act as a viable strategy to maximizing forest multifunctionality, while also promoting biodiversity conservation to mitigate climate change effects.


Assuntos
Carbono , Árvores , Biodiversidade , Biomassa , China , Florestas , Solo
20.
Microorganisms ; 8(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233486

RESUMO

Increased soil nitrogen (N) from atmospheric N deposition could change microbial communities and functions. However, the underlying mechanisms and whether soil phosphorus (P) status are responsible for these changes still have not been well explained. Here, we investigated the effects of N and P additions on soil bacterial and fungal communities and predicted their functional compositions in a temperate forest. We found that N addition significantly decreased soil bacterial diversity in the organic (O) horizon, but tended to increase bacterial diversity in the mineral (A) horizon soil. P addition alone did not significantly change soil bacterial diversity but mitigated the negative effect of N addition on bacterial diversity in the O horizon. Neither N addition nor P addition significantly influenced soil fungal diversity. Changes in soil microbial community composition under N and P additions were mainly due to the shifts in soil pH and NO3- contents. N addition can affect bacterial functional potentials, such as ureolysis, N fixation, respiration, decomposition of organic matter processes, and fungal guilds, such as pathogen, saprotroph, and mycorrhizal fungi, by which more C probably was lost in O horizon soil under increased N deposition. However, P addition can alleviate or switch the effects of increased N deposition on the microbial functional potentials in O horizon soil and may even be a benefit for more C sequestration in A horizon soil. Our results highlight the different responses of microorganisms to N and P additions between O and A horizons and provides an important insight for predicting the changes in forest C storage status under increasing N deposition in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...