Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37445203

RESUMO

Electromagnetic spring active isolators have attracted extensive attention in recent years. The standard Bouc-Wen model is widely used to describe hysteretic behavior but cannot accurately describe asymmetric behavior. The standard Bouc-Wen model is improved to better describe the dynamic characteristic of a toothed electromagnetic spring. The hysteresis model of toothed electromagnetic spring is established by adding mass, damping, and asymmetric correction terms with direction. Subsequently, the particle swarm optimization algorithm is used to identify the parameters of the established model, and the results are compared with those obtained from the experiment. The results show that the current has a significant impact on the dynamic curve. When the current increases from 0.5 A to 2.0 A, the electromagnetic force sharply increases from 49 N to 534 N. Under different excitations and currents, the residual points predicted by the model proposed in this work fall basically in the horizontal band region of -20-20 N (for an applied current of 1.0 A) and -40-80 N (for an application of 4.5 mm/s). Furthermore, the maximum relative error of the model is 12.75%. The R2 of the model is higher than 0.98 and the highest value is 0.9993, proving the accuracy of the established model.

2.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363183

RESUMO

In this paper, a simple magnetization model convenient for engineering applications is presented based on the expressions of the first-order LTI system model. Considering the trade-off between the nonlinearity of anhysteretic magnetization and the hysteresis width, the proposed model employs two different equations with different magnetic field amplitudes. Furthermore, the proposed model utilizes the first-order LTI system model with a low magnetic field amplitude and a simple nonlinear function, based on the amplitude-frequency function, with a high magnetic field amplitude. Two important characteristic parameters for engineering applications, namely, amplitude and the equivalent phase lag, were exacted and analyzed to validate the computation precision of the proposed model. Then, the model was verified through comparisons to the validated Jiles-Atherton model. For easy use, similar to a physics-based model instead of a fitting method, empirical expressions for the model parameters were given, and applicable ranges of these equations were determined using the parameters of the Jiles-Atherton model. Finally, an example of the magnetization model applied to an on/off type device was computed to further verify the effectiveness of the proposed model with quite a simple expression.

3.
Materials (Basel) ; 15(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36079257

RESUMO

Metal rubber has been extensively used in recent years due to its several unique properties, especially in adverse environments. Although many experimental studies have been conducted, theoretical research on metal rubber is still in its infancy. In this work, a dynamic model for the nonlinear characteristics of pot-shaped metal rubber is established on the basis of the asymmetric dynamic model of the wire rope shock absorber and the trace method model. In addition, the corresponding parameters in the model are identified based on the parameter-separation method. The theoretical hysteresis loop obtained using the model and the measured hysteresis loop agree with each other. The results show that the asymmetric dynamic model can better describe the asymmetric dynamic characteristics of pot-shaped metal rubber. Furthermore, a pot-shaped metal rubber vibration reduction system is built to further verify the correctness of the model. This study provides an experimental reference and a theoretical basis for the practical application of pot-shaped metal rubber in the field of three-dimensional vibration reduction.

4.
Materials (Basel) ; 14(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401716

RESUMO

In this study, a laminated composite damping structure (LCDS) with metal rubber (MR) as matrix and silicone rubber (SR) as reinforcement has been designed. The embedded interlocking structure formed by the multi-material interface of the LCDS can effectively incorporate the high damping characteristics of traditional polymer damping materials and significantly enhance the adjustable stiffness of the damping structure. Based on the periodic cyclic vibration excitation, dynamic tests on different laminated structures were designed, and the damping performance and fatigue characteristics under periodic vibration excitation of the LCDS, based on MR and SR, were explored in depth. The experimental results exhibited that, compared to single-compound damping structures, the LCDS with SR as reinforcement and MR as matrix has excellent stiffness and damping characteristics. The incorporation of the silicon-based reinforcement can significantly improve the performance of the entire structure under cyclic fatigue vibration. In particular, the effects of material preparation and operating parameters on the composite structure are discussed. The effects of MR matrix density, operating frequency, amplitude, and preload on the stiffness and damping properties of the MR- and SR-based LCDS were investigated by the single factor controlled variable method. The results demonstrated that the vibration frequency has little effect on the LCDS damping performance. By increasing the density of the MR matrix or increasing the structural preload, the energy dissipation characteristics and damping properties of the LCDS can be effectively improved. With the increase in vibration excitation amplitude, the energy consumption of the LCDS increases, and the average dynamic stiffness changes at different rates, resulting in the loss factor decreasing first and then increasing. In this study, a damping structure suitable for narrow areas has been designed, which overcomes the temperature intolerance and low stiffness phenomena of traditional polymer rubber materials, and provides effective guidance for the design of damping materials with controllable high damping and stiffness.

5.
Materials (Basel) ; 13(6)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204437

RESUMO

In this paper, the dynamic compressive mechanical properties of entangled metallic wire material (EMWM) under low-velocity impact were investigated and the constitutive model for EMWM under low-velocity impact was established. The research in this paper is based on a series of drop-hammer tests. The results show that the energy absorption rate of EMWM is in the range from 50% to 85%. Moreover, the EMWM with a higher relative density would not plastically deform macroscopically and has excellent characteristics of repetitive energy absorption. With the increase in relative density, the maximum deformation of EMWM decreases gradually, and the impact force of EMWM increases gradually. With the increase in impact-velocity, the phenomenon of stiffness softening before reaching the maximum deformation of EMWM becomes more significant. A constitutive model for EMWM based on the Sherwood-Frost model was established to predict the dynamic compressive mechanical properties of EMWM. The accuracy of the model was verified by comparing the calculated results with the experimental data of the EMWM with different relative densities under different impact-velocities. The comparison results show that the established model can properly predict the dynamic compressive mechanical characteristics of EMWM under low-velocity impact loading.

6.
Materials (Basel) ; 12(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627313

RESUMO

In this paper, the stiffness and damping property of entangled metallic wire materials (EMWM) under quasi-static and low-velocity impact loading were investigated. The results reveal that the maximum deformation of the EMWM mainly depends on the maximum load it bears, and that air damping is the main way to dissipate impact energy. The EMWM can absorb more energy (energy absorption rate is over 60%) under impact conditions. The EMWM has excellent characteristics of repetitive energy absorption.

7.
Materials (Basel) ; 12(16)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394784

RESUMO

Based on the requirements of underwater acoustic stealth, the classification and research background of acoustic coatings are introduced herein. The research significance of acoustic coatings is expounded from the perspective of both the military and civilian use. A brief overview of the conventional design process of acoustic coatings is presented, which describes the substrates used in different countries. Aimed at the local design of acoustic coatings, research progress on passive and semi-active/active sound absorption structure is summarized. Focused on the passive acoustic coatings; acoustic cavity design and optimization, acoustic performance of acoustic coatings with rigid inclusions or scatterers, and acoustic coatings with a hybrid structure are discussed. Moreover, an overview of the overall design of acoustic coatings based on the sound field characteristics of the submarine is also presented. Finally, the shortcomings of the research are discussed, breakthroughs in acoustic coating design research are forecast, and the key technical issues to be solved are highlighted.

8.
Materials (Basel) ; 12(16)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395838

RESUMO

Entangled metallic wire material (EMWM) is a kind of porous damping material. To promote the engineering application of EMWM, it is necessary to establish the constitutive model of EMWM to estimate its mechanical properties. In this paper, a series of quasi-static compression experiments for plate-like EMWM specimens made of austenitic stainless steel wire (06Cr19Ni10) with different densities were carried out in the temperature range of 20-500 °C. It was found that the stiffness of the plate-like EMWM would increase with the increases in the ambient temperature. The non-linear characteristics of the force-displacement curve of the plate-like EMWM would be weakened. Taking the spatial structural characteristics of the plate-like EMWM and the influence of the thermal expansion of the structure into account, a new constitutive model for plate-like EMWM was presented by the combination of the Johnson-Cook model and the Sherwood-Frost constitutive framework model. The accuracy of the model was verified by the experimental data under different temperatures. The results show that the calculated results of the model are consistent with the experimental results. This model can provide an effective theoretical basis for predicting the mechanical properties of plate-like EMWM and guiding its design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...