Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37687237

RESUMO

This study investigates the effects of moisture content control on the characteristics, properties, and in vitro starch digestion of roasted rice powder made from natural high-resistant starch (RS) rice varieties. The results demonstrate that adjusting the moisture content before roasting significantly affects the RS content of the roasted rice powder. Among various moisture levels tested, the addition of 15% water (rice-to-water ratio of 85:15) before roasting resulted in the highest RS content, reaching 22.61%. Several key parameters of the rice samples before and after optimal moisture control were analyzed, including thermal stability, chain length distribution, volatile flavor composition, and scanning electron microscopy. Additionally, in vitro digestion properties were measured. The findings revealed that the volatile flavor compounds in the high-RS roasted rice significantly increased compared to non-roasted rice. Moreover, the thermal stability of the rice samples improved, and the chain length distribution exhibited significant changes. The water absorption and expansion properties were significantly lower in the high-RS roasted rice. Furthermore, the in vitro starch digestion of the roasted flour made from high-RS rice showed a significantly lower digestion rate compared to common rice, indicating a lower starch hydrolysis index in high-RS rice with the sbe-rs genotype. Overall, the roasting process of natural high-RS rice modifies its characteristics, increases the RS content, enhances the flavor, and results in a lower starch digestion rate compared to common rice. This study provides valuable data for the food industry to promote the application of high-RS rice varieties with mutations in the SBEIIb gene, such as Youtangdao2 (YTD2).


Assuntos
Oryza , Amido Resistente , Amido , Oryza/genética , Pós , Farinha , Água
2.
Breed Sci ; 70(3): 409-414, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32714065

RESUMO

Resistant starch (RS) is beneficial for human health, and especially for diabetics. Considering the high cost and low productivity of the Jiangtangdao 1 rice variety with high RS content, breeding high RS rice varieties exhibiting high productivity is essential. A molecular marker-assisted selection strategy was applied to increase RS content in a three-line hybrid rice variety. The functional rice variety Jiangtangdao 1, which contains sbe3-rs (on chr2) that controls the RS content, was used as the high RS content donor parent. Subsequently, male sterile maintainer and restorer lines containing homozygous sbe3-rs were bred using molecular marker-assisted selection combined with traditional breeding methods. The male sterile line was crossed with the restorer lines to identify the optimal hybrid combination with a high RS content. We obtained four combinations for which the yields were >50% higher than those of the control Jiangtangdao 1. In addition, there was no significant difference in the RS content between the combinations and Jiangtangdao 1. The hybrid rice plants with high RS content exhibited favorable agronomic traits and therefore have broad prospects for commercial application.

3.
Planta ; 247(3): 693-703, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29170911

RESUMO

MAIN CONCLUSION: The acetohydroxy acid synthase S627N mutation confers herbicide tolerance in rice, and the rice variety containing this mutation produces good yields. This variety is commercially viable at Shanghai and Jiangsu regions in China. Weedy rice is a type of rice that produces lower yields and poorer quality grains than cultivated rice. It plagues commercial rice fields in many countries. One strategy to control its proliferation is to develop rice varieties that are tolerant to specific herbicides. Acetohydroxy acid synthase (AHAS) mutations have been found to confer herbicide tolerance to rice. Here, we identified a single mutation (S627N) in AHAS from an indica rice variety that conferred tolerance against imidazolinone herbicides, including imazethapyr and imazamox. A japonica rice variety (JD164) was developed to obtain herbicide tolerance by introducing the mutated indica ahas gene. Imidazolinone application was sufficient to efficiently control weedy rice in the JD164 field. Although the imazethapyr treatment caused dwarfing in the JD164 plants, it did not significantly reduce yields. To determine whether the decrease of the ahas mRNA expression caused the dwarfism of JD164 after imazethapyr application, we detected the ahas mRNA level in plants. The abundance of the ahas mRNA in JD164 increased after imidazolinone application, thus excluding the mRNA expression level as a possible cause of dwarfism. Activity assays showed that the mutated AHAS was tolerant to imidazolinone but the catalytic efficiency of the mutated AHAS decreased in its presence. Moreover, the activity of the mutated AHAS decreased more in the presence of imazethapyr than in the presence of imazamox. We observed no difference in the AHAS secondary structures, but homology modeling suggested that the S627N mutation enabled the substrate to access the active site channel in AHAS, resulting in imidazolinone tolerance. Our work combined herbicides with a rice variety to control weedy rice and showed the mechanism of herbicide tolerance in this rice variety.


Assuntos
Acetolactato Sintase/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Imidazolinas/farmacologia , Oryza/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Acetolactato Sintase/metabolismo , China , Produção Agrícola , Oryza/enzimologia
4.
Breed Sci ; 66(4): 481-489, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27795673

RESUMO

Foods rich in resistant starch can help prevent various diseases, including diabetes, colon cancers, diarrhea, and chronic renal and hepatic diseases. Variations in starch biosynthesis enzymes could contribute to the high content of resistant starch in some cultivars of rice (Oryza sativa L.). Our previously published work indicated that the sbe3-rs gene in the rice mutant line, 'Jiangtangdao1' was a putative allele of the rice starch branching enzyme gene SBEIIb (previously known as SBE3); sbe3-rs might control the biosynthesis of the high resistant starch content in the rice line. Biomolecular analysis showed that the activity of SBEs was significantly lower in soluble extracts of immature seeds harvested from 'Jiangtangdao1' 15 days after flowering than in the extracts of the wild-type rice line 'Huaqingdao'. We performed gene complementation assays by introducing the wild-type OsSBEIIb into the sbe3-rs mutant 'Jiangtangdao1'. The genetically complemented lines demonstrated restored seed-related traits. The structures of endosperm amylopectin and the morphological and physicochemical properties of the starch granules in the transformants recovered to wild-type levels. This study provides evidence that sbe3-rs is a novel allele of OsSBEIIb, responsible for biosynthesis of high resistant starch in 'Jiangtangdao1'.

5.
PLoS One ; 7(8): e43026, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22937009

RESUMO

Foods high in resistant starch (RS) are beneficial to prevent various diseases including diabetes, colon cancers, diarrhea and chronic renal or hepatic diseases. Elevated RS in rice is important for public health since rice is a staple food for half of the world population. A japonica mutant 'Jiangtangdao 1' (RS = 11.67%) was crossed with an indica cultivar 'Miyang 23' (RS = 0.41%). The mutant sbe3-rs that explained 60.4% of RS variation was mapped between RM6611 and RM13366 on chromosome 2 (LOD = 36) using 178 F(2) plants genotyped with 106 genome-wide polymorphic SSR markers. Using 656 plants from four F(3:4) families, sbe3-rs was fine mapped to a 573.3 Kb region between InDel 2 and InDel 6 using one STS, five SSRs and seven InDel markers. SBE3 which codes for starch branching enzyme was identified as a candidate gene within the putative region. Nine pairs of primers covering 22 exons were designed to sequence genomic DNA of the wild type for SBE3 and the mutant for sbe3-rs comparatively. Sequence analysis identified a missense mutation site where Leu-599 of the wild was changed to Pro-599 of the mutant in the SBE3 coding region. Because the point mutation resulted in the loss of a restriction enzyme site, sbe3-rs was not digested by a CAPS marker for SpeI site while SBE3 was. Co-segregation of the digestion pattern with RS content among 178 F(2) plants further supported sbe3-rs responsible for RS in rice. As a result, the CAPS marker could be used in marker-assisted breeding to develop rice cultivars with elevated RS which is otherwise difficult to accurately assess in crops. Transgenic technology should be employed for a definitive conclusion of the sbe3-rs.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Genes de Plantas/genética , Oryza/enzimologia , Oryza/genética , Cromossomos de Plantas/genética , Dados de Sequência Molecular , Mutação
6.
Zhonghua Yi Shi Za Zhi ; 41(3): 138-40, 2011 May.
Artigo em Chinês | MEDLINE | ID: mdl-21781540

RESUMO

Qi-Huang is a short name for TCM, Qi-huang culture, i.e. the culture of TCM. The textual investigation on Qibo's biography and his cadastral records, as well as his contribution to life science is the key to clarify the cultural origins of TCM. Lacking of historical data, the study on Qibo is difficult to be extended profoundly. It is necessary to cut in from the aspect of culture and start field study. According to the historical records and the cultural relics discovered and unearthed, the fragment of Qibo's life was explored. It is thought that Xinmi is one of the important origins of Qi-huang culture. So it is important to grasp the concept of culture to expound and extend the Qi-huang culture, as well as extract the figures of the culture, all these are so important to study Qibo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...