Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(43): 40944-40950, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31597422

RESUMO

An individual nanoparticle-based plasmonic nanotechnology was used for real-time monitoring of lectin-sugar interactions, which could be designed as novel plasmonic nanobiosensors for the detection of trace concanavalin A (ConA) with high sensitivity and selectivity. The localized surface plasmon resonance (LSPR) spectra of Au@Ag nanocubes (NCs) are linearly shifted to a long wavelength with an increasing concentration of ConA. In fact, each Au@Ag NC can act as a nanobiosensor for the quantified detection of trace ConA, which enables the miniaturization of the biosensor system to nanoscale. Furthermore, the results demonstrated the perfect biosensing ability with the dual channel of dark-field microscopy images and LSPR spectra. We expect that this nanobiosensor system can provide an alternative important method for monitoring the specific binding of lectin-sugar at a single nanoparticle surface.


Assuntos
Carboidratos/análise , Concanavalina A/química , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Ressonância de Plasmônio de Superfície
2.
Ecotoxicol Environ Saf ; 110: 129-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25232990

RESUMO

Phytoremediation is an attractive approach for the cleanup of polycyclic aromatic hydrocarbons-contaminated soil. The joint effect of alfalfa and microorganisms, including Arthrobacter oxydans, Staphylococcus auricularis and Stenotrophomonas maltophilia, on pyrene removal was investigated. The results showed that the joint effect primarily contributed to pyrene removal, and the concentration of residual pyrene in rhizosphere soil was lower than that in non-rhizosphere soil. After joint treatment for 45d, pyrene in rhizosphere soils decreased from 11.3, 52.5 and 106.0mg/kg to 2.0-3.0, 15.0-18.7, and 41.2-44.8mg/kg, respectively. These bacteria significantly enhanced pyrene accumulation and microbial community diversity, and increased soil dehydrogenase and polyphenol oxidase activities. Pyrene was initially degraded through ring cleavage. One of the main metabolites 4-dihydroxy-phenanthrene was transformed into naphthol and 1,2-dihydroxynaphthalene, which were further degraded through salicylic acid pathway and phthalic acid pathway, separately.


Assuntos
Arthrobacter/metabolismo , Medicago sativa/química , Pirenos/química , Pirenos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Staphylococcus/metabolismo , Stenotrophomonas maltophilia/metabolismo , Biodegradação Ambiental
3.
Chemosphere ; 114: 255-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25113210

RESUMO

Decabromodiphenyl ether (BDE209) is a ubiquitous persistent pollutant and has contaminated the environment worldwide. To accelerate BDE209 elimination and reveal the mechanism concerned, the biosurfactant tea saponin enhanced degradation of BDE209 by Brevibacillus brevis was conducted. The results revealed that tea saponin could efficiently increase the solubility of BDE209 in mineral salts medium and improve its biodegradation. The degradation efficiency of 0.5 mg L(-1) BDE209 by 1 g L(-1) biomass with surfactant was up to 55% within 5d. Contact time was a significant factor for BDE209 biodegradation. BDE209 biodegradation was coupled with bioaccumulation, ion release and utilization, and debromination to lower brominated PBDE metabolites. During the biodegradation process, B. brevis metabolically released Na(+), NH4(+), NO2(-) and Cl(-), and utilized the nutrient ions Mg(2+), PO4(3-) and SO4(2-). GC-MS analysis revealed that the structure of BDE209 changed under the action of strain and nonabromodiphenyl ethers (BDE-208, -207 and -206), octabromodiphenyl ethers (BDE-203, -197 and -196) and heptabromodiphenyl ether (BDE-183) were generated by debromination.


Assuntos
Brevibacillus/metabolismo , Poluentes Ambientais/metabolismo , Retardadores de Chama/metabolismo , Éteres Difenil Halogenados/metabolismo , Saponinas/metabolismo , Tensoativos/metabolismo , Biodegradação Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Halogenação , Saponinas/química , Tensoativos/química , Chá/química
4.
Huan Jing Ke Xue ; 34(1): 217-25, 2013 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-23487942

RESUMO

The characteristics of Cu2+ and Cd2+ biosorption by Stenotrophomonas maltophilia (S. maltophilia) under different biomass, metal concentration and glutaraldehyde content were studied and the correlations among metal biosorption, NO3- removal and ion release were analyzed. The mechanism was explored through ion biosorption, exchange, conversion and release. The experimental results demonstrated that S. maltophilia was an efficient strain to remove Cu2+ and Cd2+. The biosorption efficiencies of Cu2+ and Cd2+ achieved 96.3% and 83.9%, respectively after dealing with 0.05 mmol x L(-1) aqueous solutions for 120 min with dry biosorbent dosage of 0.2 g x L(-1). Cu2+ and Cd2+ biosorption by S. maltophilia included surface adsorption, transmembrane active transportation, bioaccumulation of NO3- and reduction of NO3- to NO2-. The intracellular transfer and reduction of NO3- to NO2- during biosorption by S. maltophilia were energy-consuming biological processes. It could also promote the release of Cl-, PO4(3-), SO-4(2-), Na+, NH4+, K+ and Ca2+. From FTIR investigation, involvement of various functional groups like acetylamino, hydroxyl and carboxyl in the binding of Cu2+ and Cd2+ was evident. Moreover, XPS results proved that the valence state of Cu2+ and Cd2+ did not changed by biosorption.


Assuntos
Cádmio/isolamento & purificação , Cobre/isolamento & purificação , Stenotrophomonas maltophilia/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Adsorção , Biodegradação Ambiental , Cádmio/metabolismo , Cobre/metabolismo , Troca Iônica , Poluentes Químicos da Água/análise
5.
Bioresour Technol ; 129: 236-41, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23247152

RESUMO

Triphenyltin (TPT) is an endocrine disruptor highly toxic to non-target organisms, and has contaminated the environment worldwide. To accelerate TPT elimination, the study on the behavior and mechanism of TPT biosorption and biodegradation by Brevibacillus brevis was conducted. The results revealed that TPT and coexisted Cu2+, Cd2+, Pb2+ and Zn2+ in solution could be adsorbed effectively by B. brevis, and TPT was further transformed to diphenyltin, monophenyltin and tin intracellularly. The removal efficiency of 0.5 mg L(-1) TPT after degradation by 0.3 g L(-1) biomass for 5d was about 60%. Suitable kinds and levels of oxygen, nutrient, surfactant and metals obviously improved TPT biodegradation. When concentrations of H2O2, glucose, rhamnolipid, Cu2+ and Zn2+ varied from 1.5 to 6 mmol L(-1), 0.5 to 5 mg L(-1), 5 to 25 mg L(-1), 0.5 to 6 mg L(-1) and 0.5 to 1 mg L(-1), separately, TPT biodegradation efficiencies increased 15-25%.


Assuntos
Brevibacillus/metabolismo , Poluentes Ambientais/metabolismo , Compostos Orgânicos de Estanho/metabolismo , Absorção , Biodegradação Ambiental , Brevibacillus/classificação , Poluentes Ambientais/isolamento & purificação , Compostos Orgânicos de Estanho/isolamento & purificação , Praguicidas/isolamento & purificação , Praguicidas/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...