Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
aBIOTECH ; 5(2): 196-201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974864

RESUMO

Phytic acid (PA) in grain seeds reduces the bioavailability of nutrient elements in monogastric animals, and an important objective for crop seed biofortification is to decrease the seed PA content. Here, we employed CRISPR/Cas9 to generate a PA mutant population targeting PA biosynthesis and transport genes, including two multi-drug-resistant protein 5 (MRP5) and three inositol pentose-phosphate kinases (IPK1). We characterized a variety of lines containing mutations on multiple IPK and MRP5 genes. The seed PA was more significantly decreased in higher-order mutant lines with multiplex mutations. However, such mutants also exhibited poor agronomic performance. In the population, we identified  two lines carrying single mutations in ipk1b and ipk1c, respectively. These mutants exhibited moderately reduced PA content, and regular agronomic performance compared to the wild type. Our study indicates that moderately decreasing PA by targeting single GmIPK1 genes, rather than multiplex mutagenesis toward ultra-low PA, is an optimal strategy for low-PA soybean with a minimal trade-off in yield performance. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00158-4.

2.
Plant J ; 119(2): 783-795, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701020

RESUMO

Symbiotic nitrogen fixation is an energy-intensive process, to maintain the balance between growth and nitrogen fixation, high concentrations of nitrate inhibit root nodulation. However, the precise mechanism underlying the nitrate inhibition of nodulation in soybean remains elusive. In this study, CRISPR-Cas9-mediated knockout of GmNLP1 and GmNLP4 unveiled a notable nitrate-tolerant nodulation phenotype. GmNLP1b and GmNLP4a play a significant role in the nitrate-triggered inhibition of nodulation, as the expression of nitrate-responsive genes was largely suppressed in Gmnlp1b and Gmnlp4a mutants. Furthermore, we demonstrated that GmNLP1b and GmNLP4a can bind to the promoters of GmNIC1a and GmNIC1b and activate their expression. Manipulations targeting GmNIC1a and GmNIC1b through knockdown or overexpression strategies resulted in either increased or decreased nodule number in response to nitrate. Additionally, transgenic roots that constitutively express GmNIC1a or GmNIC1b rely on both NARK and hydroxyproline O-arabinosyltransferase RDN1 to prevent the inhibitory effects imposed by nitrate on nodulation. In conclusion, this study highlights the crucial role of the GmNLP1/4-GmNIC1a/b module in mediating high nitrate-induced inhibition of nodulation.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Nitratos , Proteínas de Plantas , Nodulação , Nodulação/genética , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Glycine max/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Simbiose , Fixação de Nitrogênio
3.
Nat Plants ; 10(5): 736-742, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38724696

RESUMO

Symbiotic nitrogen fixation in legume nodules requires substantial energy investment from host plants, and soybean (Glycine max (L.) supernodulation mutants show stunting and yield penalties due to overconsumption of carbon sources. We obtained soybean mutants differing in their nodulation ability, among which rhizobially induced cle1a/2a (ric1a/2a) has a moderate increase in nodule number, balanced carbon allocation, and enhanced carbon and nitrogen acquisition. In multi-year and multi-site field trials in China, two ric1a/2a lines had improved grain yield, protein content and sustained oil content, demonstrating that gene editing towards optimal nodulation improves soybean yield and quality.


Assuntos
Glycine max , Nodulação , Glycine max/genética , Glycine max/metabolismo , Glycine max/microbiologia , Nodulação/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Fixação de Nitrogênio/genética , Edição de Genes , Mutação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Soja/genética , Proteínas de Soja/metabolismo
5.
Nat Commun ; 14(1): 4711, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543605

RESUMO

Legumes can utilize atmospheric nitrogen via symbiotic nitrogen fixation, but this process is inhibited by high soil inorganic nitrogen. So far, how high nitrogen inhibits N2 fixation in mature nodules is still poorly understood. Here we construct a co-expression network in soybean nodule and find that a dynamic and reversible transcriptional network underlies the high N inhibition of N2 fixation. Intriguingly, several NAC transcription factors (TFs), designated as Soybean Nitrogen Associated NAPs (SNAPs), are amongst the most connected hub TFs. The nodules of snap1/2/3/4 quadruple mutants show less sensitivity to the high nitrogen inhibition of nitrogenase activity and acceleration of senescence. Integrative analysis shows that these SNAP TFs largely influence the high nitrogen transcriptional response through direct regulation of a subnetwork of senescence-associated genes and transcriptional regulators. We propose that the SNAP-mediated transcriptional network may trigger nodule senescence in response to high nitrogen.


Assuntos
Fabaceae , Glycine max , Glycine max/genética , Nitrogênio , Fixação de Nitrogênio/genética , Fatores de Transcrição/genética , Nódulos Radiculares de Plantas/genética , Simbiose/fisiologia
6.
aBIOTECH ; 3(2): 110-114, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36304517

RESUMO

Pod shattering can lead to devastating yield loss of soybean and has been a negatively selected trait in soybean domestication and breeding. Nevertheless, a significant portion of soybean cultivars are still pod shattering-susceptible, limiting their regional and climatic adaptabilities. Here we performed genetic diagnosis on the shattering-susceptible trait of a national registered cultivar, Huachun6 (HC6), and found that HC6 carries the susceptible genotype of a candidate Pod dehiscence 1 (PDH1) gene, which exists in a significant portion of soybean cultivars. We next performed genome editing on PDH1 gene by clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9). In T2 progenies, several transgene-free lines with pdh1 mutations were characterized without affecting major agronomic traits. The pdh1 mutation significantly improved the pod shattering resistance which is associated with aberrant lignin distribution in inner sclerenchyma. Our work demonstrated that precision breeding by genome editing on PDH1 holds great potential for precisely improving pod shattering resistance and adaptability of soybean cultivars.

8.
Int J Mol Sci ; 21(13)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630201

RESUMO

The basic leucine zipper (bZIP) is a plant-specific transcription factor family that plays crucial roles in response to biotic and abiotic stresses. However, little is known about the function of bZIP genes in soybean. In this study, we isolated a bZIP gene, GmbZIP19, from soybean. A subcellular localization study of GmbZIP19 revealed its nucleus localization. We showed that GmbZIP19 expression was significantly induced by ABA (abscisic acid), JA (jasmonic acid) and SA (salicylic acid), but reduced under salt and drought stress conditions. Further, GmbZIP19 overexpression Arabidopsis lines showed increased resistance to S. sclerotiorum and Pseudomonas syringae associated with upregulated ABA-, JA-, ETH- (ethephon-)and SA-induced marker genes expression, but exhibited sensitivity to salt and drought stresses in association with destroyed stomatal closure and downregulated the salt and drought stresses marker genes' expression. We generated a soybean transient GmbZIP19 overexpression line, performed a Chromatin immunoprecipitation assay and found that GmbZIP19 bound to promoters of ABA-, JA-, ETH-, and SA-induced marker genes in soybean. The yeast one-hybrid verified the combination. The current study suggested that GmbZIP19 is a positive regulator of pathogen resistance and a negative regulator of salt and drought stress tolerance.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Glycine max/genética , Estresse Fisiológico/genética , Ácido Abscísico/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Ciclopentanos/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Ácido Salicílico/metabolismo , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo
9.
Plant Biotechnol J ; 18(3): 721-731, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31452351

RESUMO

The output of genetic mutant screenings in soya bean [Glycine max (L.) Merr.] has been limited by its paleopolypoid genome. CRISPR-Cas9 can generate multiplex mutants in crops with complex genomes. Nevertheless, the transformation efficiency of soya bean remains low and, hence, remains the major obstacle in the application of CRISPR-Cas9 as a mutant screening tool. Here, we report a pooled CRISPR-Cas9 platform to generate soya bean multiplex mutagenesis populations. We optimized the key steps in the screening protocol, including vector construction, sgRNA assessment, pooled transformation, sgRNA identification and gene editing verification. We constructed 70 CRISPR-Cas9 vectors to target 102 candidate genes and their paralogs which were subjected to pooled transformation in 16 batches. A population consisting of 407 T0 lines was obtained containing all sgRNAs at an average mutagenesis frequency of 59.2%, including 35.6% lines carrying multiplex mutations. The mutation frequency in the T1 progeny could be increased further despite obtaining a transgenic chimera. In this population, we characterized gmric1/gmric2 double mutants with increased nodule numbers and gmrdn1-1/1-2/1-3 triple mutant lines with decreased nodulation. Our study provides an advanced strategy for the generation of a targeted multiplex mutant population to overcome the gene redundancy problem in soya bean as well as in other major crops.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Glycine max/genética , Mutagênese , Nódulos Radiculares de Plantas/genética
10.
Front Plant Sci ; 8: 2091, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312369

RESUMO

Magnesium (Mg) deficiency, a widespread yet overlooked problem in agriculture, has been reported to retard plant growth and development, through affecting key metabolic pathways. However, the metabolic responses of plant to Mg deficiency is still not fully understood. Here we report a metabolomic study to evaluate the metabolic responses to Mg deficiency in soybean leaves and roots. Hydroponic grown soybean were exposed to Mg starvation for 4 and 8 days, respectively. Metabolic changes in the first mature trifoliolate leaves and roots were quantified by conducting GC-TOF-MS based metabolomic analysis. Principal component analysis (PCA) showed that Mg deficient plants became distinguishable from controls at 4 days after stress (DAS) at metabolic level, and were clearly discriminated at 8 DAS. Mg deficiency could cause large metabolite alterations on carbon and nitrogen metabolism. At 8 DAS, carbon allocation from shoot to root is decreased by Mg deficiency. Remarkably, most amino acids (such as phenylalanine, asparagine, leucine, isoleucine, glycine, glutamine, and serine) showed pronounced accumulation in the leaves, while most organic acids (including pyruvic acid, citric acid, 2-keto-glutaric acid, succinic acid, fumaric acid, and malic acid) were significantly decreased in the roots. Our study shows that the carbon and nitrogen metabolic responses are distinct in leaves and roots under Mg deficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...