Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38498425

RESUMO

The combined application of manure and chemical fertilizers has been recognized as a critical factor driving significant changes in crop yield and nutrient use efficiency, holding the potential to optimize agricultural management to achieve high yields. In this 40-year study, we investigated the effect of manure amendment on soybean and maize yields, water and nitrogen use efficiencies (WUE and NUE), and water and mineral N storage at 0-100 cm soil depths from 2017 to 2018 to explore the optimization of fertilization management strategies for soybean and maize production in Northeast China. To elucidate the impact of chemical fertilizers and manure, twelve treatments-control (CK); single N fertilizer at a low rate (N1) and that at a high rate (N2); N1, phosphorus (P), and potassium (K) fertilizer (N1PK); manure alone at 13.5 and 27 t ha-1 (M1 and M2); and those combined with N, P, or K fertilizer (M1N1, M1N2, and M1N1PK and M2N1, M2N2, and M2N1PK)-were selected and studied. The results showed that long-term amendment with manure significantly increased crop biomass and yield in the soybean-maize-maize rotation system. Combining with manure increased the WUE, the partial factor productivity of N fertilizer (PFPN), and N physiological efficiency (PEN) in both the soybean and maize seasons; conserved soil water (mainly at 40-60 cm); and increased soil N retention (in the upper 60 cm layer), which reduced the risk of N leaching, with a better effect being observed after the application of 13.5 t ha-1 manure. These results provide insight into the potential of using fertilization management strategies that include amendment with 13.5 t ha-1 manure in combination with N, P, and K fertilizer in the maize season and only chemical fertilizer in the soybean season, as these results indicate that such strategies can achieve high yields and be used to implement agricultural sustainable development in brown soil regions in Northeast China.

2.
Front Plant Sci ; 14: 1105131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794221

RESUMO

Global awareness of the need to enhance crop production and reduce environmental issues associated with nitrogen (N) fertilizer has increased. However, studies on how the N fate changed with manure addition are still limited. To explore efficient fertilization management for an improved grain yield, N recovery efficiency, and reduced N residual in the soil or that unaccounted for, a field 15N micro-plot trial in a soybean-maize-maize rotation was conducted to evaluate the effect of fertilization regimes on soybean and maize yields and the fertilizer N fate in the plant-soil system during 2017-2019 within a 41-year experiment in Northeast China. Treatments included chemical N alone (N), N and phosphorus (NP), N, P, and potassium (NPK), and those combined with manure (MN, MNP, and MNPK). Application of manure increased grain yield, on average, by 153% for soybean (2017) and 105% and 222% for maize (2018 and 2019) compared to no manure, with the highest at MNPK. Crop N uptake and that from labeled 15N-urea also benefited from manure addition, mainly partitioned to grain, and the average 15N-urea recovery was 28.8% in the soybean season with a reduction in the subsequent maize seasons (12.6%, and 4.1%). Across the three years, the fertilizer 15N recovery ranged from 31.2-63.1% (crop) and 21.9-40.5% (0-40 cm soil), with 14.6-29.9% unaccounted for, including N losses. In the two maize seasons, manure addition significantly increased the residual 15N recovery in crop attributed to the enhancing 15N remineralization, and reduced that in soil and unaccounted for compared to single chemical fertilizer, with MNPK performing the best. Therefore, applying N, P, and K fertilizers in the soybean season and NPK combined with manure (13.5 t ha-1) in the maize seasons is a promising fertilization management strategy in Northeast China and similar regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...