Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 63(3): 708-713, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294383

RESUMO

The Smith-Purcell radiation produced by electrons moving closely to a grating can be enhanced by resonances. Here, we show a method to manipulate the directionality of the resonance-enhanced radiation. Using the rigorous coupled-wave analysis method, we compare the radiation from symmetric and asymmetric gratings, showing that the enhanced Smith-Purcell radiation can become unilateral with a perturbation that breaks the structural symmetry. Our work provides an effective method for frequency-domain calculation of Smith-Purcell radiation and also an approach to realize more efficient use of the radiation.

2.
Opt Lett ; 47(11): 2911-2914, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648962

RESUMO

Smith-Purcell radiation (SPR) is an important means of generating terahertz waves, and the enhancement of SPR is an attractive topic nowadays. Inspired by the phenomenon of special SPR, where the enhancement is achieved by using a high-duty-cycle grating, we describe a new, to the best of our knowledge, but more effective approach to this challenging problem. By deriving a simple analytical solution for the SPR from an annular electron beam passing through a cylindrical metallic grating, we show that the inverse structure, a low-duty-cycle grating can exhibit rather high SPR efficiencies in the presence of quasi-bound states in the continuum (quasi-BICs). The analytical prediction is supported by particle-in-cell simulations, which show that the quasi-BICs can enhance the superradiant SPR generated by a train of electron bunches by orders of magnitude. These results present an interesting mechanism for enhancing the SPR from metallic gratings, and may find applications in terahertz free-electron lasers.

3.
Opt Express ; 28(15): 23048-23059, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752555

RESUMO

We demonstrate and optimize a tri-layer vertical coupler for a silicon nitride (Si3N4) multilayer platform operating at a 2 µm band. The large spacing between the topmost and bottommost layers of a gradient structure enables ultra-low crossing loss and interlayer crosstalk without affecting the efficiency interlayer transition. We achieve a 0.31 dB transition loss, ultra-low multi-layer crosstalk of -59.3 dB at a crossing angle of 90° with an interlayer gap of 2300 nm at 1950nm. With width optimization of this structure, the fabrication tolerances toward lateral misalignment of two stages in this coupler have increased 61% and 56%, respectively. We also propose a vertical coupler, based on this design, with mode selectivity and achieve an extinction ratio of < 15 dB for wavelengths in the 1910-1990 range. Meanwhile, a multi-layer interlaced AWGs centered at 1950nm and based on vertical coupler has been demonstrated. The proposed vertical couplers exhibit potential for application in large-scale photonic-integrated circuits and broadly in photonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...