Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2310633, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279636

RESUMO

Silicon-based materials have been considered potential anode materials for next-generation lithium-ion batteries based on their high theoretical capacity and low working voltage. However, side reactions at the Si/electrolyte interface bring annoying issues like low Coulombic efficiency, sluggish ionic transport, and inferior temperature compatibility. In this work, the surface Al2 O3 coating layer is proposed as an artificial solid electrolyte interphase (SEI), which can serve as a physical barrier against the invasion of byproducts like HF(Hydrogen Fluoride) from the decomposition of electrolyte, and acts as a fast Li-ion transport pathway. Besides, the intrinsically high mechanical strength can effectively inhibit the volume expansion of the silicon particles, thus promoting the cyclability. The as-assembled battery cell with the Al2 O3 -coated Si-C anode exhibits a high initial Coulombic efficiency of 80% at RT and a capacity retention ratio up to ≈81.9% after 100 cycles, which is much higher than that of the pristine Si-C anode (≈74.8%). Besides, the expansion rate can also be decreased from 103% to 50%. Moreover, the Al2 O3 -coated Si-C anode also extends the working temperature from room temperature to 0 °C-60 °C. Overall, this work provides an efficient strategy for regulating the interface reactions of Si-based anode and pushes forward the practical applications at real conditions.

2.
Adv Mater ; 36(16): e2311256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38181436

RESUMO

Due to low cost and high energy density, sodium metal batteries (SMBs) have attracted growing interest, with great potential to power future electric vehicles (EVs) and mobile electronics, which require rapid charge/discharge capability. However, the development of high-rate SMBs has been impeded by the sluggish Na+ ion kinetics, particularly at the sodium metal anode (SMA). The high-rate operation severely threatens the SMA stability, due to the unstable solid-electrolyte interface (SEI), the Na dendrite growth, and large volume changes during Na plating-stripping cycles, leading to rapid electrochemical performance degradations. This review surveys key challenges faced by high-rate SMAs, and highlights representative stabilization strategies, including the general modification of SMB components (including the host, Na metal surface, electrolyte, separator, and cathode), and emerging solutions with the development of solid-state SMBs and liquid metal anodes; the working principle, performance, and application of these strategies are elaborated, to reduce the Na nucleation energy barriers and promote Na+ ion transfer kinetics for stable high-rate Na metal anodes. This review will inspire further efforts to stabilize SMAs and other metal (e.g., Li, K, Mg, Zn) anodes, promoting high-rate applications of high-energy metal batteries towards a more sustainable society.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...