Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomicrofluidics ; 16(5): 054101, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36097514

RESUMO

The alveolus is a basic functional unit of the human respiratory system, and the airflow in the alveoli plays an important role in determining the transport and deposition of particulate matter, which is crucial for inhaled disease diagnosis and drug delivery. In the present study, taking advantage of the precise control ability of the microfluidic technique, a rhythmically expanding alveolar chip with multiple alveoli in two generations is designed and both the geometric and kinematic similarities are matched with the real human respiration system. With the help of a micro-PIV measurement system, the microflow patterns inside each alveolus can be studied. The observed vortex and radial flow patterns and the discovery of stagnant saddle points are similar to those captured in our previous platform with only one alveolus [Lv et al., Lab Chip 20, 2394-2402 (2020)]. However, the interactions between multiple alveoli also uncover new phenomena, such as the finding of stagnant saddle points in non-vortex flow patterns and significant differences in the flow pattern around the points between the time of T/4 and 3T/4. The obtained results could enrich the understanding of microflow in a whole alveolar tree with multiple generations.

2.
Micromachines (Basel) ; 13(3)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35334776

RESUMO

Understanding the mechanism of particle transport and sedimentation in pulmonary alveolus is important for deciphering the causes of respiratory diseases and helping the development of drug delivery. In this study, taking advantage of the microfluidic technique, an experimental platform was developed to study particle behavior in a rhythmically expanding alveolar chip for a sufficient number of cycles. The alveolar flow patterns at different generations were measured for two cases with the gravity direction parallel or vertical to the alveolar duct. Affected by both the vortex flow inside the alveoli and the shear flow in the duct simultaneously, it was observed that particles inside the alveoli either escaped from the inlet of the alveolar duct or stayed in the alveoli, revealing the irreversibility of particle transport in the alveoli. At the earlier acinar generations, particles were inclined to deposit on the distal alveolar wall. The settling rates of particles of different sizes in the alveoli were also compared. This study provides valuable data for understanding particle transport and sedimentation in the alveoli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...