Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 809558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154206

RESUMO

The double cropping system has been widely applied in many subtropical viticultural regions. In the 2-year study of 2014-2015, four grape varieties were selected to analyze their fruit volatile compounds in four consecutive seasons in the Guangxi region of South China, which had a typical subtropical humid monsoon climate. Results showed that berries of winter seasons had higher concentrations of terpenes, norisoprenoids, and C6/C9 compounds in "Riesling," "Victoria," and "Muscat Hamburg" grapes in both of the two vintages. However, in the "Cabernet Sauvignon" grapes, only the berries of the 2014 winter season had higher terpene concentrations, but lower norisoprenoid concentrations than those of the corresponding summer season. The Pearson correlation analysis showed the high temperature was the main climate factor that affected volatile compounds between the summer and winter seasons. Hexanal, γ-terpinene, terpinen-4-ol, cis-furan linalool oxide, and trans-pyran linalool oxide were all negatively correlated with the high-temperature hours in all of the four varieties. Transcriptome analysis showed that the upregulated VviDXSs, VviPSYs, and VviCCDs expressions might contribute to the accumulations of terpenes or norisoprenoids in the winter berries of these varieties. Our results provided insights into how climate parameters affected grape volatiles under the double cropping system, which might improve the understanding of the grape berries in response to the climate changes accompanied by extreme weather conditions in the future.

2.
Foods ; 11(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35010174

RESUMO

Under the double cropping system, berries usually showed significant quality variations in the summer and winter seasons. In the two-year/four-consecutive-season study, two table grapes of 'Muscat Hamburg' and 'Victoria' were investigated to determine the phenolic compounds in their berries. Different from those of the summer season, the berries in the winter season suffered no high-temperature stress since veraison to harvest in 2014 and 2015. The variations in the season temperatures led to a higher anthocyanin concentration in the winter season berries of 'Muscat Hamburg' grapes than that in the summer berries, while the summer season berries had higher proportions of acylated and methylated anthocyanins than those in the winter season berries. Similar to the anthocyanins, the winter season berries also had a higher flavonol concentration in both varieties. Transcriptome analysis showed that the upregulated genes involved in the flavonoid pathway in the winter season berries were agreed with the changes found in the metabolites. However, the influence of the growing seasons on the flavanols was not consistent in the two varieties, and the variations in VviLARs between the grapes of 'Muscat Hamburg' and 'Victoria' might be the cause. This research helped us better understand the double cropping system and how the climate factors affected the phenolic compounds in the double cropping system.

3.
Front Plant Sci ; 8: 1912, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176986

RESUMO

A double cropping system has been commercially adopted in southern China, where there is abundant sunshine and heat resources. In this viticulture system, the first growing season normally starts as a summer cropping cycle; then, the vine is pruned and forced, resulting in a second crop in winter. Due to climate differences between the summer and winter growing seasons, grape ripening progression and flavonoid metabolism vary greatly. Here, the metabolites and transcriptome of flavonoid pathways were analyzed in grapes grown under two growing seasons at different stages. Notably, the winter cropping cycle strongly increased flavonoid levels by several times in comparison to summer grapes, while the summer season took a major toll on anthocyanin and flavonol accumulation, since the winter cropping greatly triggered the expression of upstream genes in the flavonoid pathway in a coordinated expression pattern. Moreover, the ratio of VviF3'5'Hs (flavonoid 3'5'-hydroxylase) to VviF3'Hs (flavonoid 3'-hydroxylase) transcript levels correlated remarkably well with the ratio of 3'5'-substituted to 3'-substituted flavonoids, which was presumed to control the flux of intermediates into different flavonoid branches. On the other hand, the phenological phase also varied greatly in the two crops. Compared to summer cropping, winter growing season accelerated the duration from budburst to veraison, therefore advancing the onset of ripening, but also prolonging the duration of ripening progression due to the purposes to harvest high-quality grapes. The differential expression pattern of hormone-related genes between the two cropping cycles might explain this phenomenon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...