Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361878

RESUMO

Poplar is an important afforestation and ornamental tree species in Northeast China. The distribution area of saline-alkali land is approximately 765 hm2 in Northeast China. The breeding of saline-alkali-resistant transgenic trees could be an effective method of afforestation in saline-alkali land. WRKY transcription factors play a crucial role in abiotic stress. In this study, we analyzed the genetic stability of the two-year-old PsnWRKY70 transgenic poplars. The results showed that PsnWRKY70 of transgenic poplars had been expressed stably and normally at the mRNA level. The gene interference expression (RE) lines had no significant effect on the growth of PsnWRKY70 under NaHCO3 stress, and the alkali damage index of RE lines was significantly lower than that of WT and overexpression (OE) lines at day 15 under NaHCO3 stress. POD activity was significantly higher in RE lines than in WT. The MDA content of the RE line was lower than that of the WT line. Transcriptome analysis showed that RE lines up-regulated genes enriched in cell wall organization or biogenesis pathway-related genes such as EXPA8, EXPA4, EXPA3, EXPA1, EXPB3, EXP10, PME53, PME34, PME36, XTH9, XTH6, XTH23, CESA1, CESA3, CES9; FLA11, FLA16 and FLA7 genes. These genes play an important role in NaHCO3 stress. Our study showed that the interference expression of the PsnWRKY70 gene can enhance the tolerance of NaHCO3 in poplar.


Assuntos
Populus , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Melhoramento Vegetal , Estresse Fisiológico/genética , Álcalis/metabolismo
2.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886886

RESUMO

WRKY is an important complex family of transcription factors involved in plant immune responses. Among them, WRKY70 plays an important role in the process of the plant defense response to the invasion of pathogens. However, the defense mechanism of PsnWRKY70 is not clear in Populus nigra. In this study, we showed that PsnWRKY70-overexpression lines (OE) had fewer leaf blight symptoms than PsnWRKY70-repressing lines (RE). PsnWRKY70 activated MAP kinase cascade genes (PsnM2K4, PsnMPK3, PsnM3K18), calcium channel proteins-related genes (PsnCNG3, PsnCNGC1, PsnCNG4), and calcium-dependent protein kinases genes (PsnCDPKL, PsnCDPKW, PsnCDPKS, PsnCDPKQ). Furthermore, 129 genes of PsnWRKY70 putative genome-wide direct targets (DTGs) were identified by using transcriptome (RNA-seq) and DNA affinity purification sequencing (DAP-seq). PsnWRKY70 directly binds to the promoters of homologous genes and LRR domain proteins to promote the expression of WRKY6, WRKY18, WRKY22, and WRKY22-1, LRR domain proteins LRR8, LRR-RLK, ADR1-like 2, NB-ARC, etc. Our study suggests that PsnWRKY70 enhances the resistance of A. alternata in poplar by activating genes in both pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI).


Assuntos
Populus , Alternaria/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Populus/genética , Populus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...