Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339082

RESUMO

Serine proteases are members of a large family of hydrolytic enzymes in which a particular serine residue in the active site performs an essential role as a nucleophile, which is required for their proteolytic cleavage function. The array of functions performed by serine proteases is vast and includes, among others, the following: (i) the ability to fight infections; (ii) the activation of blood coagulation or blood clot lysis systems; (iii) the activation of digestive enzymes; and (iv) reproduction. Serine protease activity is highly regulated by multiple families of protease inhibitors, known collectively as the SERine Protease INhibitor (SERPIN). The serpins use a conformational change mechanism to inhibit proteases in an irreversible way. The unusual conformational change required for serpin function provides an elegant opportunity for allosteric regulation by the binding of cofactors, of which the most well-studied is heparin. The goal of this review is to discuss some of the clinically relevant serine protease-serpin interactions that may be enhanced by heparin or other negatively charged polysaccharides. The paired serine protease-serpin in the framework of heparin that we review includes the following: thrombin-antithrombin III, plasmin-anti-plasmin, C1 esterase/kallikrein-C1 esterase inhibitor, and furin/TMPRSS2 (serine protease Transmembrane Protease 2)-alpha-1-antitrypsin, with the latter in the context of COVID-19 and prostate cancer.


Assuntos
Serpinas , Serpinas/metabolismo , Heparina/química , Serina Proteases , Inibidores de Serina Proteinase/metabolismo , Anticoagulantes , Trombina/metabolismo
2.
Front Cell Infect Microbiol ; 13: 1216492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965256

RESUMO

Introduction: A strong epidemiologic link exists between cigarette smoke (CS) exposure and susceptibility to tuberculosis (TB). Macrophage and murine studies showed that CS and nicotine impair host-protective immune cells against Mycobacterium tuberculosis (MTB) infection. While CS and nicotine may activate T regulatory cells (Tregs), little is known about how CS may affect these immunosuppressive cells with MTB infection. Methods: We investigated whether CS-exposed Tregs could exacerbate MTB infection in co-culture with human macrophages and in recipient mice that underwent adoptive transfer of Tregs from donor CS-exposed mice. Results: We found that exposure of primary human Tregs to CS extract impaired the ability of unexposed human macrophages to control an MTB infection by inhibiting phagosome-lysosome fusion and autophagosome formation. Neutralizing CTLA-4 on the CS extract-exposed Tregs abrogated the impaired control of MTB infection in the macrophage and Treg co-cultures. In Foxp3+GFP+DTR+ (Thy1.2) mice depleted of endogenous Tregs, adoptive transfer of Tregs from donor CS-exposed B6.PL(Thy1.1) mice with subsequent MTB infection of the Thy1.2 mice resulted in a greater burden of MTB in the lungs and spleens than those that received Tregs from air-exposed mice. Mice that received Tregs from donor CS-exposed mice and infected with MTB had modest but significantly reduced numbers of interleukin-12-positive dendritic cells and interferon-gamma-positive CD4+ T cells in the lungs, and an increased number of total programmed cell death protein-1 (PD-1) positive CD4+ T cells in both the lungs and spleens. Discussion: Previous studies demonstrated that CS impairs macrophages and host-protective T effector cells in controlling MTB infection. We now show that CS-exposed Tregs can also impair control of MTB in co-culture with macrophages and in a murine model.


Assuntos
Fumar Cigarros , Mycobacterium tuberculosis , Tuberculose , Camundongos , Humanos , Animais , Linfócitos T Reguladores , Nicotina , Tuberculose/microbiologia
3.
Biochem Soc Trans ; 51(3): 1361-1375, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37294003

RESUMO

Alpha-1-antitrypsin (AAT), a serine protease inhibitor (serpin), is increasingly recognized to inhibit SARS-CoV-2 infection and counter many of the pathogenic mechanisms of COVID-19. Herein, we reviewed the epidemiologic evidence, the molecular mechanisms, and the clinical evidence that support this paradigm. As background to our discussion, we first examined the basic mechanism of SARS-CoV-2 infection and contend that despite the availability of vaccines and anti-viral agents, COVID-19 remains problematic due to viral evolution. We next underscored that measures to prevent severe COVID-19 currently exists but teeters on a balance and that current treatment for severe COVID-19 remains grossly suboptimal. We then reviewed the epidemiologic and clinical evidence that AAT deficiency increases risk of COVID-19 infection and of more severe disease, and the experimental evidence that AAT inhibits cell surface transmembrane protease 2 (TMPRSS2) - a host serine protease required for SARS-CoV-2 entry into cells - and that this inhibition may be augmented by heparin. We also elaborated on the panoply of other activities of AAT (and heparin) that could mitigate severity of COVID-19. Finally, we evaluated the available clinical evidence for AAT treatment of COVID-19.


Assuntos
COVID-19 , Deficiência de alfa 1-Antitripsina , Humanos , Heparina , Epidemiologia Molecular , SARS-CoV-2
4.
J Immunol ; 209(9): 1746-1759, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162872

RESUMO

α1-Antitrypsin (AAT), a serine protease inhibitor, is the third most abundant protein in plasma. Although the best-known function of AAT is irreversible inhibition of elastase, AAT is an acute-phase reactant and is increasingly recognized to have a panoply of other functions, including as an anti-inflammatory mediator and a host-protective molecule against various pathogens. Although a canonical receptor for AAT has not been identified, AAT can be internalized into the cytoplasm and is known to affect gene regulation. Because AAT has anti-inflammatory properties, we examined whether AAT binds the cytoplasmic glucocorticoid receptor (GR) in human macrophages. We report the finding that AAT binds to GR using several approaches, including coimmunoprecipitation, mass spectrometry, and microscale thermophoresis. We also performed in silico molecular modeling and found that binding between AAT and GR has a plausible stereochemical basis. The significance of this interaction in macrophages is evinced by AAT inhibition of LPS-induced NF-κB activation and IL-8 production as well as AAT induction of angiopoietin-like 4 protein, which are, in part, dependent on GR. Furthermore, this AAT-GR interaction contributes to a host-protective role against mycobacteria in macrophages. In summary, this study identifies a new mechanism for the gene regulation, anti-inflammatory, and host-defense properties of AAT.


Assuntos
Receptores de Glucocorticoides , alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina , Angiopoietinas/metabolismo , Angiopoietinas/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Interleucina-8/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Elastase Pancreática/metabolismo , Receptores de Glucocorticoides/metabolismo , Inibidores de Serina Proteinase
5.
Immune Netw ; 22(3): e27, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35799709

RESUMO

Little is known of the lung cellular immunophenotypes in patients with non-tuberculous mycobacterial lung disease (NTM-LD). Flow-cytometric analyses for the major myeloid and lymphoid cell subsets were performed in less- and more-diseased areas of surgically resected lungs from six patients with NTM-LD and two with Pseudomonas aeruginosa lung disease (PsA-LD). Lymphocytes, comprised mainly of NK cells, CD4+ and CD8+ T cells, and B cells, accounted for ~60% of all leukocytes, with greater prevalence of T and B cells in more-diseased areas. In contrast, fewer neutrophils were found with decreased number in more-diseased areas. Compared to NTM-LD, lung tissues from patients with PsA-LD demonstrated relatively lower numbers of T and B lymphocytes but similar numbers of NK cells. While this study demonstrated a large influx of lymphocytes into the lungs of patients with chronic NTM-LD, further analyses of their phenotypes are necessary to determine the significance of these findings.

7.
Sci Rep ; 12(1): 5207, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338216

RESUMO

The cell surface serine protease Transmembrane Protease 2 (TMPRSS2) is required to cleave the spike protein of SARS-CoV-2 for viral entry into cells. We determined whether negatively-charged heparin enhanced TMPRSS2 inhibition by alpha-1-antitrypsin (AAT). TMPRSS2 activity was determined in HEK293T cells overexpressing TMPRSS2. We quantified infection of primary human airway epithelial cells (hAEc) with human coronavirus 229E (HCoV-229E) by immunostaining for the nucleocapsid protein and by the plaque assay. Detailed molecular modeling was undertaken with the heparin-TMPRSS2-AAT ternary complex. Enoxaparin enhanced AAT inhibition of both TMPRSS2 activity and infection of hAEc with HCoV-229E. Underlying these findings, detailed molecular modeling revealed that: (i) the reactive center loop of AAT adopts an inhibitory-competent conformation compared with the crystal structure of TMPRSS2 bound to an exogenous (nafamostat) or endogenous (HAI-2) TMPRSS2 inhibitor and (ii) negatively-charged heparin bridges adjacent electropositive patches at the TMPRSS2-AAT interface, neutralizing otherwise repulsive forces. In conclusion, enoxaparin enhances AAT inhibition of both TMPRSS2 and coronavirus infection. Such host-directed therapy is less likely to be affected by SARS-CoV-2 mutations. Furthermore, given the known anti-inflammatory activities of both AAT and heparin, this form of treatment may target both the virus and the excessive inflammatory consequences of severe COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Enoxaparina , Enoxaparina/farmacologia , Células HEK293 , Humanos , SARS-CoV-2 , Serina Endopeptidases
8.
Yale J Biol Med ; 94(4): 527-535, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34970090

RESUMO

Non-tuberculous mycobacterial lung disease (NTM-LD) is most commonly due to species within the Mycobacterium avium complex (MAC) and Mycobacterium abscessus complex (MAbC). Surgical lung resection, typically a lobectomy or segmentectomy, is occasionally undertaken for individuals with recalcitrant but localized NTM-LD. Since the growth characteristics of MAC (slow growers) and MAbC (rapid growers) as well as their drug susceptibility patterns are significantly different, the objective of this study is to characterize and compare the histopathologic features of the resected lungs due to these two major NTM groups. From 1996 to 2017, 356 patients with NTM-LD due to MAC (n=270), MAbC (n=54), or both (n=32) underwent a total of 404 lobar resections (with the lingula counted as a separate lobe) at the University of Colorado Hospital. We analyzed by microscopy the existing surgical lung tissue sections for bronchiolitis, bronchiolectasis, bronchiectasis, non-necrotizing granuloma (airway, parenchymal, and total), necrotizing granuloma (airway, parenchymal, and total), peri-airway fibrosis, fibrous pleuritis, and lymphoid follicles. There were no significant differences in the presence or absence of most of the histopathologic features of surgically removed lungs due to MAC, MAbC, or both MAC + MAbC. However, there were significantly more necrotizing granulomas (airway, parenchymal, and total) and fibrous pleuritis in MAC compared to MAbC lung diseases. Since necrotizing granulomas may be a sign of inadequate control of the infection, we posit that their presence may be an indication of increased chronicity, increased virulence of MAC compared to MAbC, and/or impaired host immunity against the NTM. Futures studies to determine the root cause of such differences in histopathologic findings in MAC versus MAbC lung disease may spawn new leads on differential pathogenic mechanisms with different NTM, with the goal of aiming for more targeted therapy against both the NTM and the lung damage induced by them.


Assuntos
Pneumopatias , Infecções por Mycobacterium não Tuberculosas , Humanos , Pulmão/cirurgia , Complexo Mycobacterium avium , Estudos Retrospectivos
9.
J Immunother Cancer ; 9(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33883256

RESUMO

BACKGROUND: Numerous trials combining radiation therapy (RT) and immunotherapy in head and neck squamous cell carcinoma (HNSCC) are failing. Using preclinical immune cold models of HNSCC resistant to RT-immune checkpoint inhibitors, we investigate therapeutic approaches of overcoming such resistance by examining the differential microenvironmental response to RT. METHODS: We subjected two HPV-negative orthotopic mouse models of HNSCC to combination RT, regulatory T cells (Treg) depletion, and/or CD137 agonism. Tumor growth was measured and intratumorous and lymph node immune populations were compared among treatment groups. Human gene sets, genetically engineered mouse models DEREG and BATF3-/-, flow and time-of-flight cytometry, RNA-Seq, Treg adoptive transfer studies, and in vitro experiments were used to further evaluate the role of dendritic cells (DCs) and Tregs in these treatments. RESULTS: In MOC2 orthotopic tumors, we find no therapeutic benefit to targeting classically defined immunosuppressive myeloids, which increase with RT. In these radioresistant tumors, supplementing combination RT and Treg depletion with anti-CD137 agonism stimulates CD103+ DC activation in tumor-draining lymph nodes as characterized by increases in CD80+ and CCR7+ DCs, resulting in a CD8 T cell-dependent response. Simultaneously, Tregs are reprogrammed to an effector phenotype demonstrated by increases in interferonγ+, tumor necrosis factorα+, PI3K+, pAKT+ and Eomes+ populations as well as decreases in CTLA4+ and NRP-1+ populations. Tumor eradication is observed when RT is increased to an 8 Gy x 5 hypofractionated regimen and combined with anti-CD25+ anti-CD137 treatment. In a human gene set from oral squamous cell carcinoma tumors, high Treg number is associated with earlier recurrence. CONCLUSIONS: Regulating Treg functionality and DC activation status within the lymph node is critical for generating a T cell effector response in these highly radioresistant tumors. These findings underscore the plasticity of Tregs and represent a new therapeutic opportunity for reprogramming the tumor microenvironment in HNSCCs resistant to conventional radioimmunotherapy approaches.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Células Dendríticas/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Cabeça e Pescoço/terapia , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Hipofracionamento da Dose de Radiação , Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Subunidade alfa de Receptor de Interleucina-2/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Depleção Linfocítica , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Carga Tumoral , Microambiente Tumoral , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
10.
J Bacteriol ; 203(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33431432

RESUMO

Free-living amoebae are ubiquitous in aquatic environments and act as environmental reservoirs for nontuberculous mycobacteria. Mycobacterium avium subsp. hominissuis recovered from Acanthamoeba has been demonstrated to be more virulent in both human and murine models. Here, we investigate the persistence of M. avium subsp. hominissuis after short-term (2 weeks) and long-term (42 weeks) co-culture in Acanthamoeba lenticulata We hypothesize that A. lenticulata-adapted M. avium subsp. hominissuis demonstrate phenotypic and genomic changes facilitating intracellular persistence in naïve Acanthamoeba and human macrophages. M. avium subsp. hominissuis CFU in co-culture with A. lenticulata were recorded every 2 weeks up to 60 weeks. While A. lenticulata-associated M. avium subsp. hominissuis CFU did not significantly change across 60 weeks of co-culture, longer adaptation time in amoebae reduced colony size. Isolates recovered after 2 or 42 weeks of amoebae co-culture were referred as "early-adapted" and "late-adapted" M. avium subsp. hominissuis, respectively. Whole genome sequencing was performed on amoebae-adapted isolates with pan-genome comparisons to the original M. avium subsp. hominissuis isolate. Next, amoebae-adapted isolates were assessed for their persistence in A. lenticulata, A. castellanii, and human THP-1 macrophages. Multiplex cytokine/chemokine analyses were conducted on THP-1 culture supernatants.  Compared to the original isolate, counts of late-adapted M. avium subsp. hominissuis were reduced in Acanthamoeba and contrary to expectations, lower counts were also observed in THP-1 macrophages with concomitant decrease in TNFa, IL-6, and MIP-1b suggesting that host adaptation may influence the inflammatory properties of M. avium IMPORTANCE Short-term interaction between Acanthamoeba and M. avium has been demonstrated to increase infectivity in human and murine models of infection, establishing the paradigm that amoebae "train" M. avium in the environment by selecting for phenotypes capable of enduring in human cells. We investigate this phenomenon further by determining the consequence of long-term amoebae adaptation on M. avium subsp. hominissuis persistence in host cells. We monitored genomic changes across long-term Acanthamoeba co-culture and report significant changes to the M. avium subsp. hominissuis genome in response to amoebae-adaptation and reduced colony size. Furthermore, we examined isolates co-cultured with A. lenticulata for 2 or 42 weeks and provide biological evidence that long-term co-culture in amoebae reduces M. avium persistence in human macrophages.

12.
Med Hypotheses ; 146: 110394, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33239231

RESUMO

No definitive treatment for COVID-19 exists although promising results have been reported with remdesivir and glucocorticoids. Short of a truly effective preventive or curative vaccine against SARS-CoV-2, it is becoming increasingly clear that multiple pathophysiologic processes seen with COVID-19 as well as SARS-CoV-2 itself should be targeted. Because alpha-1-antitrypsin (AAT) embraces a panoply of biologic activities that may antagonize several pathophysiologic mechanisms induced by SARS-CoV-2, we hypothesize that this naturally occurring molecule is a promising agent to ameliorate COVID-19. We posit at least seven different mechanisms by which AAT may alleviate COVID-19. First, AAT is a serine protease inhibitor (SERPIN) shown to inhibit TMPRSS-2, the host serine protease that cleaves the spike protein of SARS-CoV-2, a necessary preparatory step for the virus to bind its cell surface receptor ACE2 to gain intracellular entry. Second, AAT has anti-viral activity against other RNA viruses HIV and influenza as well as induces autophagy, a known host effector mechanism against MERS-CoV, a related coronavirus that causes the Middle East Respiratory Syndrome. Third, AAT has potent anti-inflammatory properties, in part through inhibiting both nuclear factor-kappa B (NFκB) activation and ADAM17 (also known as tumor necrosis factor-alpha converting enzyme), and thus may dampen the hyper-inflammatory response of COVID-19. Fourth, AAT inhibits neutrophil elastase, a serine protease that helps recruit potentially injurious neutrophils and implicated in acute lung injury. AAT inhibition of ADAM17 also prevents shedding of ACE2 and hence may preserve ACE2 inhibition of bradykinin, reducing the ability of bradykinin to cause a capillary leak in COVID-19. Fifth, AAT inhibits thrombin, and venous thromboembolism and in situ microthrombi and macrothrombi are increasingly implicated in COVID-19. Sixth, AAT inhibition of elastase can antagonize the formation of neutrophil extracellular traps (NETs), a complex extracellular structure comprised of neutrophil-derived DNA, histones, and proteases, and implicated in the immunothrombosis of COVID-19; indeed, AAT has been shown to change the shape and adherence of non-COVID-19-related NETs. Seventh, AAT inhibition of endothelial cell apoptosis may limit the endothelial injury linked to severe COVID-19-associated acute lung injury, multi-organ dysfunction, and pre-eclampsia-like syndrome seen in gravid women. Furthermore, because both NETs formation and the presence of anti-phospholipid antibodies are increased in both COVID-19 and non-COVID pre-eclampsia, it suggests a similar vascular pathogenesis in both disorders. As a final point, AAT has an excellent safety profile when administered to patients with AAT deficiency and is dosed intravenously once weekly but also comes in an inhaled preparation. Thus, AAT is an appealing drug candidate to treat COVID-19 and should be studied.


Assuntos
Tratamento Farmacológico da COVID-19 , Modelos Biológicos , alfa 1-Antitripsina/uso terapêutico , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Antitrombinas/uso terapêutico , Antivirais/uso terapêutico , Apoptose/efeitos dos fármacos , COVID-19/fisiopatologia , Armadilhas Extracelulares/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Elastase de Leucócito/antagonistas & inibidores , Pandemias , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/fisiologia , Internalização do Vírus/efeitos dos fármacos , alfa 1-Antitripsina/administração & dosagem
13.
Front Microbiol ; 11: 116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117140

RESUMO

Mycobacterium tuberculosis (MTB) and non-tuberculous mycobacteria (NTM) are formidable causes of lung diseases throughout the world. While MTB is considered to be more virulent than NTM, host factors also play a key role in disease development. To elucidate whether there are differential immune responses to various mycobacteria, THP-1 macrophages were temporally infected with MTB H37Rv or with four different NTM species. We found that cells infected with MTB had greater bacterial burden and p65 nuclear factor-kappa B (NF-κB) activation than cells infected with NTM. There was also differential expression of mRNA for interleukin-1-ß (IL-1ß), IL-8, IL-10, and tumor necrosis factor-alpha (TNF-α) with no distinct pattern of mRNA expression among the different mycobacteria. In contrast, at the protein level, some generalizations can be made of the cytokines and chemokines expressed. Compared to uninfected cells, the rapid-growing Mycobacterium smegmatis but not Mycobacterium abscessus induced significantly greater pro-inflammatory cytokines and IL-10, whereas both NTM individually induced greater levels of chemokines. Compared to uninfected control cells, the two slow-growing NTM and MTB differentially induced cytokine expression with Mycobacterium avium inducing more pro-inflammatory cytokines and IL-10, whereas M. avium, Mycobacterium intracellulare, and MTB inducing greater but similar levels of chemokines. MTB-infected THP-1 cells also demonstrated lower level of phagosome-lysosome fusion and apoptosis than NTM-infected cells while there were differences in these macrophage functions among the NTM species. Interestingly, M. intracellulare, M. avium, and MTB have similar levels of autophagosome formation, but the levels displayed by all three were lower than for M. smegmatis and M. abscessus. This study demonstrates the differences in bacterial burden and macrophage effector functions among several clinically relevant mycobacterial species. Such disparities may, in part, account for differences in clinical outcomes among patients infected with various species of NTM as has been seen for different strains of MTB.

14.
Cytokine ; 125: 154793, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31398626

RESUMO

Low-grade inflammation is associated with the development of insulin resistance in obese individuals. The present study aims to provide additional evidence strengthening the role of interleukin (IL)-32 in this key process. Using an IL-32 transgenic (IL-32tg) mouse model, we observed that IL-32tg fed a normal diet had greater body weight, due to greater accumulation of white adipose tissue (WAT) along with larger sized adipocytes. This led to metabolic consequences, with significant higher leptin levels and a trend towards hyperinsulinemia, indicating a phenotype resembling the metabolic syndrome. Adipocytes of IL-32tg mice were more prone to induce a pro-inflammatory response locally, which would be expected when predisposed to insulin resistance and type2 diabetes mellitus (T2D). In conclusion, our study provides novel evidence of a direct contribution of IL-32 to pathophysiological perturbations within the adipose tissue, possibly contributing to the metabolic syndrome that precedes frank insulin resistance and T2D. Future research should focus on the role of IL-32 in the obesity epidemic.


Assuntos
Adipócitos/citologia , Adipocinas/metabolismo , Tecido Adiposo Branco/metabolismo , Interleucinas/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo Branco/fisiopatologia , Animais , Peso Corporal/genética , Peso Corporal/fisiologia , Citocinas/metabolismo , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Inflamação/genética , Inflamação/metabolismo , Interleucinas/genética , Leptina/metabolismo , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética
15.
Front Immunol ; 10: 1417, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293581

RESUMO

Rationale: The association between non-tuberculous mycobacterial lung disease and alpha-1-antitrypsin (AAT) deficiency is likely due, in part, to underlying emphysema or bronchiectasis. But there is increasing evidence that AAT itself enhances host immunity against microbial pathogens and thus deficiency could compromise host protection. Objectives: The goal of this project is to determine if AAT could augment macrophage activity against non-tuberculous mycobacteria. Methods: We compared the ability of monocyte-derived macrophages cultured in autologous plasma that were obtained immediately before and soon after AAT infusion-given to individuals with AAT deficiency-to control an ex vivo Mycobacterium intracellulare infection. Measurements and Main Results: We found that compared to pre-AAT infused monocyte-derived macrophages plus plasma, macrophages, and contemporaneous plasma obtained after a session of AAT infusion were significantly better able to control M. intracellulare infection; the reduced bacterial burden was linked with greater phagosome-lysosome fusion and increased autophagosome formation/maturation, the latter due to AAT inhibition of both M. intracellulare-induced nuclear factor-kappa B activation and A20 expression. While there was a modest increase in apoptosis in the M. intracellulare-infected post-AAT infused macrophages and plasma, inhibiting caspase-3 in THP-1 cells, monocyte-derived macrophages, and alveolar macrophages unexpectedly reduced the M. intracellulare burden, indicating that apoptosis impairs macrophage control of M. intracellulare and that the host protective effects of AAT occurred despite inducing apoptosis. Conclusion: AAT augments macrophage control of M. intracellulare infection through enhancing phagosome-lysosome fusion and autophagy.


Assuntos
Macrófagos Alveolares/imunologia , Complexo Mycobacterium avium/imunologia , Infecção por Mycobacterium avium-intracellulare/imunologia , Deficiência de alfa 1-Antitripsina/imunologia , alfa 1-Antitripsina/imunologia , Autofagia/imunologia , Bronquiectasia/etiologia , Enfisema/etiologia , Humanos , Pneumopatias/imunologia , Pneumopatias/microbiologia , Ativação de Macrófagos/imunologia , Fagossomos/imunologia , Fator de Transcrição RelA/metabolismo , Deficiência de alfa 1-Antitripsina/patologia
16.
mSphere ; 4(3)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31167948

RESUMO

Epidemiological evidence correlates low serum vitamin A (retinol) levels with increased susceptibility to active tuberculosis (TB); however, retinol is biologically inactive and must be converted into its bioactive form, all-trans retinoic acid (ATRA). Given that ATRA triggers a Niemann-Pick type C2 (NPC2)-dependent antimicrobial response against Mycobacterium tuberculosis, we investigated the mechanism by which the immune system converts retinol into ATRA at the site of infection. We demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived dendritic cells (DCs), but not macrophages, express enzymes in the vitamin A metabolic pathway, including aldehyde dehydrogenase 1 family, member a2 (ALDH1A2) and short-chain dehydrogenase/reductase family, member 9 (DHRS9), enzymes capable of the two-step conversion of retinol into ATRA, which is subsequently released from the cell. Additionally, mRNA and protein expression levels of ALDH1A2 and DC marker CD1B were lower in tuberculosis lung tissues than in normal lung. The conditioned medium from DCs cultured with retinol stimulated antimicrobial activity from M. tuberculosis-infected macrophages, as well as the expression of NPC2 in monocytes, which was blocked by specific inhibitors, including retinoic acid receptor inhibitor (RARi) or N,N-diethylaminobenzaldehyde (DEAB), an ALDH1A2 inhibitor. These results indicate that metabolism of vitamin A by DCs transactivates macrophage antimicrobial responses.IMPORTANCE Tuberculosis (TB) is the leading cause of death by a single infectious agent worldwide. One factor that contributes to the success of the microbe is the deficiency in immunomodulatory nutrients, such as vitamin A (retinol), which are prevalent in areas where TB is endemic. Clinical trials show that restoration of systemic retinol levels in active TB patients is ineffective in mitigating the disease; however, laboratory studies demonstrate that activation of the vitamin A pathway in Mycobacterium tuberculosis-infected macrophages triggers an antimicrobial response. Therefore, the goal of this study was to determine the link between host retinol levels and retinoic acid-mediated antimicrobial responses against M. tuberculosis By combining established in vitro models with in situ studies of lung tissue from TB patients, this study demonstrates that the innate immune system utilizes transcellular metabolism leading to activation between dendritic cells and macrophages as a means to combat the pathogen.


Assuntos
Células Dendríticas/enzimologia , Células Dendríticas/imunologia , Mycobacterium tuberculosis/imunologia , Vitamina A/metabolismo , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/imunologia , Adulto , Família Aldeído Desidrogenase 1/genética , Família Aldeído Desidrogenase 1/imunologia , Células Cultivadas , Meios de Cultivo Condicionados/química , Células Dendríticas/microbiologia , Humanos , Pulmão/microbiologia , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/microbiologia , Retinal Desidrogenase/genética , Retinal Desidrogenase/imunologia , Tuberculose/microbiologia
17.
Immune Netw ; 18(3): e22, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29984040

RESUMO

Many studies have linked cigarette smoke (CS) exposure and tuberculosis (TB) infection and disease although much fewer have studied second-hand smoke (SHS) exposure. Our goal is to review the epidemiologic link between SHS and TB as well as to summarize the effects SHS and direct CS on various immune cells relevant for TB. PubMed searches were performed using the key words "tuberculosis" with "cigarette," "tobacco," or "second-hand smoke." The bibliography of relevant papers were examined for additional relevant publications. Relatively few studies associate SHS exposure with TB infection and active disease. Both SHS and direct CS can alter various components of host immunity resulting in increased vulnerability to TB. While the epidemiologic link of these 2 health maladies is robust, more definitive, mechanistic studies are required to prove that SHS and direct CS actually cause increased susceptibility to TB.

18.
Curr Opin Immunol ; 54: 66-73, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29936307

RESUMO

Nontuberculous mycobacteria (NTM) are ubiquitous in the environment and human exposure is likely to be pervasive; yet, the occurrence of NTM-related diseases is relatively infrequent. This discrepancy suggests that host risk factors play an integral role in vulnerability to NTM infections. Isolated NTM lung disease (NTM-LD) is often due to underlying anatomical pulmonary or immune disorders, either of which may be acquired or genetic. However, many cases of NTM-LD have no known underlying risk factors and may be multigenic and/or multicausative. In contrast, extrapulmonary visceral or disseminated NTM diseases almost always have an underlying severe immunodeficiency, which may also be acquired or genetic. NTM cell wall components play a key role in pathogenesis and as inducers of the host immune response.


Assuntos
Suscetibilidade a Doenças/imunologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Fatores de Virulência/imunologia , Humanos , Infecções por Mycobacterium não Tuberculosas/genética , Micobactérias não Tuberculosas/imunologia , Fatores de Virulência/genética
19.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29483288

RESUMO

Visceral leishmaniasis (VL) is a chronic parasitic disease caused by Leishmania infantum in the Americas. During VL, several proinflammatory cytokines are produced in spleen, liver, and bone marrow. However, the role of interleukin-32 (IL-32) has not been explored in this disease. IL-32 can induce production of proinflammatory cytokines in innate immune cells and polarize the adaptive immune response. Herein, we discovered that L. infantum antigens induced expression of mRNA mainly for the IL-32γ isoform but also induced low levels of the IL-32ß transcript in human peripheral blood mononuclear cells. Furthermore, infection of human IL-32γ transgenic mice (IL-32γTg mice) with L. infantum promastigote forms increased IL-32γ expression in the spleen and liver. Interestingly, IL-32γTg mice harbored less parasitism in the spleen and liver than wild-type (WT) mice. In addition, IL-32γTg mice showed increased granuloma formation in the liver compared to WT mice. The protection against VL was associated with increased production of nitric oxide (NO), interferon gamma (IFN-γ), IL-17A, and tumor necrosis factor alpha by splenic cells restimulated ex vivo with L. infantum antigens. In parallel, there was an increase in the number of Th1 and Th17 T cells in the spleens of IL-32γTg mice infected with L. infantum IL-32γ induction of IFN-γ and IL-17A expression was found to be essential for NO production by splenic cells of infected animals. These data indicate that IL-32γ potentiates the Th1/Th17 immune response during experimental VL, thus contributing to the control of L. infantum infection.


Assuntos
Imunidade Inata/imunologia , Imunidade Inata/fisiologia , Interleucinas/imunologia , Interleucinas/fisiologia , Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Fatores de Proteção , Animais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...