Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 69(5): 671-687, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38105159

RESUMO

Establishing alternative methods for freshwater production is imperative to effectively alleviate global water scarcity, particularly in land-locked arid regions. In this context, extracting water from the ubiquitous atmospheric moisture is an ingenious strategy for decentralized freshwater production. Sorption-based atmospheric water harvesting (SAWH) shows strong potential for supplying liquid water in a portable and sustainable way even in desert environments. Herein, the latest progress in SAWH technology in terms of materials, devices, and systems is reviewed. Recent advances in sorbent materials with improved water uptake capacity and accelerated sorption-desorption kinetics, including physical sorbents, polymeric hydrogels, composite sorbents, and ionic solutions, are discussed. The thermal designs of SAWH devices for improving energy utilization efficiency, heat transfer, and mass transport are evaluated, and the development of representative SAWH prototypes is clarified in a chronological order. Thereafter, state-of-the-art operation patterns of SAWH systems, incorporating intermittent, daytime continuous and 24-hour continuous patterns, are examined. Furthermore, current challenges and future research goals of this cutting-edge field are outlined. This review highlights the irreplaceable role of heat and mass transfer enhancement and facile structural improvement for constructing high-yield water harvesters.

2.
Nat Commun ; 13(1): 6771, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351950

RESUMO

Water and electricity scarcity are two global challenges, especially in arid and remote areas. Harnessing ubiquitous moisture and sunlight for water and power generation is a sustainable route to address these challenges. Herein, we report a moisture-induced energy harvesting strategy to realize efficient sorption-based atmospheric water harvesting (SAWH) and 24-hour thermoelectric power generation (TEPG) by synergistically utilizing moisture-induced sorption/desorption heats of SAWH, solar energy in the daytime and radiative cooling in the nighttime. Notably, the synergistic effects significantly improve all-day thermoelectric power density (~346%) and accelerate atmospheric water harvesting compared with conventional designs. We further demonstrate moisture-induced energy harvesting for a hybrid SAWH-TEPG device, exhibiting high water production of 750 g m-2, together with impressive thermoelectric power density up to 685 mW m-2 in the daytime and 21 mW m-2 in the nighttime. Our work provides a promising approach to realizing sustainable water production and power generation at anytime and anywhere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...