Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosystems ; 238: 105190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492628

RESUMO

A primary objective of biology is the development of universal laws that define how organic form develops and how it evolves as a function of size, both ontogenetically and across evolutionary time. Scaling theory has been essential in reaching this goal by giving a complete perspective point, particularly in illuminating the fundamental biological features produced within scaling exponents defining families of equations. Nonetheless, the theoretical basis of the allometric equation within scaling theory are inadequately explained, particularly when it comes to establishing links between micro-level processes at the cellular level and macro-level phenomena. We proposed an unlimited cell bipartition, resulting in an exponential growth in cell numbers during an individual's lifespan, to bridge this conceptual gap between cellular processes and allometric scaling. The power-law scaling between body mass and organ weight was produced by the synchronous exponential increments and the allometric exponent is rate of logarithmic cell proliferation rate. Substituting organ weight for erythrocyte weight aided in the development of a power-law scaling relationship between body mass and metabolic rate. Furthermore, it is critical to understand how cell size affects the exponent in power-law scaling. We find that a bigger exponent will result from an increase in the average weight of organ cells or a decrease in the average weight of all cells. Furthermore, cell proliferation dynamics showed a complex exponential scaling between body mass and longevity, defying the previously reported power-law scaling. We discovered a quadratic link between longevity and logarithmic body mass. Notably, all of the parameters included in these relationships are explained by indices linked to cell division and embryonic development. This research adds to our understanding of the complex interaction between cellular processes and overarching scaling phenomena in biology.


Assuntos
Evolução Biológica , Modelos Biológicos , Tamanho Corporal , Divisão Celular , Tamanho Celular
2.
Curr Zool ; 69(3): 332-338, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37351294

RESUMO

One of the most intriguing questions in eusocial insects is to understand how the overt reproductive conflict in the colony appears limited when queens or kings are senescent or lost because the morphologically similar individuals in the colony are reproductively totipotent. Whether there are some individuals who preferentially differentiate into replacement reproductives or not has received little attention. The consistent individual behavioral differences (also termed "animal personality") of individuals from the colony can shape cunningly their task and consequently affect the colony fitness but have been rarely investigated in eusocial insects. Here, we used the termite Reticulitermes labralis to investigate if variations in individual personalities (elusiveness and aggressiveness) may predict which individuals will perform reproductive differentiation within colonies. We observed that when we separately reared elusive and aggressive workers, elusive workers differentiate into reproductives significantly earlier than aggressive workers. When we reared them together in the proportions 12:3, 10:5, and 8:7 (aggressive workers: elusive workers), the first reproductives mostly differentiated from the elusive workers, and the reproductives differentiated from the elusive workers significantly earlier than from aggressive workers. Furthermore, we found that the number of workers participating in reproductive differentiation was significantly lower in the groups of both types of workers than in groups containing only elusive workers. Our results demonstrate that the elusiveness trait was a strong predictor of workers' differentiation into replacement reproductives in R. labralis. Moreover, our results suggest that individual personalities within the insect society could play a key role in resolving the overt reproductive conflict.

3.
Ecol Evol ; 11(13): 8768-8775, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34257926

RESUMO

The evolution of cooperation requires more benefits of group living than solitary lifestyle. However, to some degree, our understanding about the benefits is hindered by abstract debates over theoretical and experimental evidences of individual selection or group selection because it is difficult to examine the actual benefits at the group level. Moreover, group density is a crucial ecological factor which deeply affects group reproduction and survival, few studies have been performed in social insects. Here, we study the effects of worker density on group direct benefits in the termite species Reticulitermes chinensis. The termite R. chinensis is an ideal model which lives with a high worker density in wood. We used the quantity of eggs and the total biomass (biomass of all group members) accumulation as two components of group benefits. We investigated the group benefits in the context of worker density according to eleven worker densities, and we measured the group benefits and the resource consumption with the same group members in two types of artificial nest areas. Moreover, we counted the stomodeal trophallaxis occurrences from any workers to queens under three worker densities to explore the degree of cooperation according to worker density. We found that both the number of eggs and the total biomass accumulation significantly increased with increasing worker density in groups. Furthermore, the consumption of resources was similar between groups with the same number of individuals gathered in small or large nest areas, but the production of eggs and the biomass accumulation were higher in groups of small nest areas than in large nest areas. Additionally, we found the stomodeal trophallaxis behavior significantly increased in higher worker density groups. Our results suggest that the group benefits influenced by the high worker density may at least partially explain the group living of eusocial insects in ecology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA