Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1325934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406188

RESUMO

Introduction: Rapid and accurate detection of food-borne pathogens on mutton is of great significance to ensure the safety of mutton and its products and the health of consumers. Objectives: The feasibility of short-wave infrared hyperspectral imaging (SWIR-HSI) in detecting the contamination status and species of Escherichia coli (EC), Staphylococcus aureus (SA) and Salmonella typhimurium (ST) contaminated on mutton was explored. Materials and methods: The hyperspectral images of uncontaminated and contaminated mutton samples with different concentrations (108, 107, 106, 105, 104, 103 and 102 CFU/mL) of EC, SA and ST were acquired. The one dimensional convolutional neural network (1D-CNN) model was constructed and the influence of structure hyperparameters on the model was explored. The effects of different spectral preprocessing methods on partial least squares-discriminant analysis (PLS-DA), support vector machine (SVM) and 1D-CNN models were discussed. In addition, the feasibility of using the characteristic wavelength to establish simplified models was explored. Results and discussion: The best full band model was the 1D-CNN model with the convolution kernels number of (64, 16) and the activation function of tanh established by the original spectra, and its accuracy of training set, test set and external validation set were 100.00, 92.86 and 97.62%, respectively. The optimal simplified model was genetic algorithm optimization support vector machine (GA-SVM). For discriminating the pathogen species, the accuracies of SVM models established by full band spectra preprocessed by 2D and all 1D-CNN models with the convolution kernel number of (32, 16) and the activation function of tanh were 100.00%. In addition, the accuracies of all simplified models were 100.00% except for the 1D-CNN models. Considering the complexity of features and model calculation, the 1D-CNN models established by original spectra were the optimal models for pathogenic bacteria contamination status and species. The simplified models provide basis for developing multispectral detection instruments. Conclusion: The results proved that SWIR-HSI combined with machine learning and deep learning could accurately detect the foodborne pathogen contamination on mutton, and the performance of deep learning models were better than that of machine learning. This study can promote the application of HSI technology in the detection of foodborne pathogens on meat.

2.
Foods ; 12(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37835247

RESUMO

To achieve accurate detection the content of multiple parts pork adulterated in mutton under the effect of mutton flavor essence and colorant by RGB images, the improved CBAM-Invert-ResNet50 network based on the attention mechanism and the inversion residual was used to detect the content of pork from the back, front leg, and hind leg in adulterated mutton. The deep features of different parts extracted by the CBAM-Invert-ResNet50 were fused by feature, stitched, and combined with transfer learning, and the content of pork from mixed parts in adulterated mutton was detected. The results showed that the R2 of the CBAM-Invert-ResNet50 for the back, front leg, and hind leg datasets were 0.9373, 0.8876, and 0.9055, respectively, and the RMSE values were 0.0268 g·g-1, 0.0378 g·g-1, and 0.0316 g·g-1, respectively. The R2 and RMSE of the mixed dataset were 0.9264 and 0.0290 g·g-1, respectively. When the features of different parts were fused, the R2 and RMSE of the CBAM-Invert-ResNet50 for the mixed dataset were 0.9589 and 0.0220 g·g-1, respectively. Compared with the model built before feature fusion, the R2 of the mixed dataset increased by 0.0325, and the RMSE decreased by 0.0070 g·g-1. The above results indicated that the CBAM-Invert-ResNet50 model could effectively detect the content of pork from different parts in adulterated mutton as additives. Feature fusion combined with transfer learning can effectively improve the detection accuracy for the content of mixed parts of pork in adulterated mutton. The results of this study can provide technical support and a basis for maintaining the mutton market order and protecting mutton food safety supervision.

3.
Foods ; 11(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36230054

RESUMO

Single-probe near-infrared spectroscopy (NIRS) usually uses different spectral information for modelling, but there are few reports about its influence on model performance. Based on sized-adaptive online NIRS information and the 2D conventional neural network (CNN), minced samples of pure mutton, pork, duck, and adulterated mutton with pork/duck were classified in this study. The influence of spectral information, convolution kernel sizes, and classifiers on model performance was separately explored. The results showed that spectral information had a great influence on model accuracy, of which the maximum difference could reach up to 12.06% for the same validation set. The convolution kernel sizes and classifiers had little effect on model accuracy but had significant influence on classification speed. For all datasets, the accuracy of the CNN model with mean spectral information per direction, extreme learning machine (ELM) classifier, and 7 × 7 convolution kernel was higher than 99.56%. Considering the rapidity and practicality, this study provides a fast and accurate method for online classification of adulterated mutton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...