Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Eur Respir Rev ; 32(170)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37914192

RESUMO

Asthma is the most common chronic disease within the paediatric population. Although it is multifactorial, its onset may be linked to early-life exposures with subsequent impact on immune system development. Microbial and dietary metabolic products have been implicated in the development and exacerbation of paediatric asthma. Linoleic acid is the most common omega-6 polyunsaturated fatty acid in the Western diet. In this review, we summarise the literature regarding the involvement of linoleic acid in the development of and its impact on existing paediatric asthma. First, we summarise the existing knowledge surrounding the relationship between human microbial metabolism and allergic diseases in children. Next, we examine cellular or animal model-based mechanistic studies that investigated the impact of dietary- and microbial-derived linoleic acid metabolites on asthma. Finally, we review the literature investigating the impact of linoleic acid metabolites on the development and exacerbation of childhood asthma. While there is conflicting evidence, there is growing support for a role of linoleic acid in the onset and pathophysiology of asthma. We recommend that additional cellular, animal, and longitudinal studies are performed that target linoleic acid and its metabolites.


Assuntos
Asma , Ácido Linoleico , Criança , Animais , Humanos , Asma/tratamento farmacológico , Asma/metabolismo
3.
Sci Rep ; 12(1): 6437, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440708

RESUMO

Preterm infants are at a greater risk for the development of asthma and atopic disease, which can lead to lifelong negative health consequences. This may be due, in part, to alterations that occur in the gut microbiome and metabolome during their stay in the Neonatal Intensive Care Unit (NICU). To explore the differential roles of family history (i.e., predisposition due to maternal asthma diagnosis) and hospital-related environmental and clinical factors that alter microbial exposures early in life, we considered a unique cohort of preterm infants born ≤ 34 weeks gestational age from two local level III NICUs, as part of the MAP (Microbiome, Atopic disease, and Prematurity) Study. From MAP participants, we chose a sub-cohort of infants whose mothers had a history of asthma and matched gestational age and sex to infants of mothers without a history of asthma diagnosis (control). We performed a prospective, paired metagenomic and metabolomic analysis of stool and milk feed samples collected at birth, 2 weeks, and 6 weeks postnatal age. Although there were clinical factors associated with shifts in the diversity and composition of stool-associated bacterial communities, maternal asthma diagnosis did not play an observable role in shaping the infant gut microbiome during the study period. There were significant differences, however, in the metabolite profile between the maternal asthma and control groups at 6 weeks postnatal age. The most notable changes occurred in the linoleic acid spectral network, which plays a role in inflammatory and immune pathways, suggesting early metabolomic changes in the gut of preterm infants born to mothers with a history of asthma. Our pilot study suggests that a history of maternal asthma alters a preterm infants' metabolomic pathways in the gut, as early as the first 6 weeks of life.


Assuntos
Asma , Microbiota , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Metaboloma , Projetos Piloto , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...