Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559153

RESUMO

Fertilization occurs before completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.

2.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659754

RESUMO

Microtubule-based spindle formation is essential to faithful chromosome segregation during cell division. In many animal species, the oocyte meiotic spindle forms without centrosomes, unlike most mitotic cells. Even in mitotic cells, centrosomes are sometimes dispensable for bipolar spindle formation. In some systems, Ran-GEF on chromatin initiates spindle assembly. We found that in C. elegans oocytes, endogenously-tagged Ran-GEF dissociates from chromatin during spindle assembly but re-associates during meiotic anaphase. Meiotic spindle assembly was normal after auxin-induced degradation of Ran-GEF but anaphase I was faster than controls and extrusion of the first polar body frequently failed. In search of a possible alternative pathway for spindle assembly, we found that soluble tubulin concentrates in the nuclear volume during germinal vesicle breakdown as well as in the spindle region during metaphase I and metaphase II. Through light and electron microscopy we found that the concentration of soluble tubulin in the metaphase II spindle region is enclosed by ER sheets which exclude cytoplasmic organelles including mitochondria and yolk granules from the meiotic spindle. We suggest that this concentration of soluble tubulin may be a redundant mechanism promoting spindle assembly near chromosomes. We present data supporting a model in which cytoplasmic organelles exclude cytoplasmic volume to drive concentration of tubulin within the nuclear/spindle envelope.

3.
J Cell Biol ; 219(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33064834

RESUMO

Anaphase chromosome movement is thought to be mediated by pulling forces generated by end-on attachment of microtubules to the outer face of kinetochores. However, it has been suggested that during C. elegans female meiosis, anaphase is mediated by a kinetochore-independent pushing mechanism with microtubules only attached to the inner face of segregating chromosomes. We found that the kinetochore proteins KNL-1 and KNL-3 are required for preanaphase chromosome stretching, suggesting a role in pulling forces. In the absence of KNL-1,3, pairs of homologous chromosomes did not separate and did not move toward a spindle pole. Instead, each homolog pair moved together with the same spindle pole during anaphase B spindle elongation. Two masses of chromatin thus ended up at opposite spindle poles, giving the appearance of successful anaphase.


Assuntos
Anáfase/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Associadas aos Microtúbulos/genética
4.
Healthc Q ; 9 Spec No: 69-74, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17087172

RESUMO

We describe our experience with a Nursing Usability Laboratory, where human factors design principles were applied to common nursing procedures. Our first step was to develop a human factors usability checklist. We then used this checklist while observing 11 nurses completing two standardized tasks on a simulated patient: (1) programming an insulin infusion and (2) programming a heparin infusion. We found that a usability checklist can help to uncover systematic error-provoking conditions in nursing tasks, that immediate improvements can be made in nursing training and practice and that participant nurses found the process useful. This paper will be of interest to any hospital seeking to enhance safety by applying human factors design principles.


Assuntos
Ergonomia/métodos , Processo de Enfermagem , Erros Médicos/prevenção & controle , Ontário , Desenvolvimento de Programas , Gestão da Segurança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...