Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 13(5): 1069-1089, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32431753

RESUMO

Many populations of freshwater fishes are threatened with losses, and increasingly, the release of hatchery individuals is one strategy being implemented to support wild populations. However, stocking of hatchery individuals may pose long-term threats to wild populations, particularly if genetic interactions occur between wild and hatchery individuals. One highly prized sport fish that has been heavily stocked throughout its range is the brook trout (Salvelinus fontinalis). In Nova Scotia, Canada, hatchery brook trout have been stocked since the early 1900s, and despite continued stocking efforts, populations have suffered declines in recent decades. Before this study, the genetic structure of brook trout populations in the province was unknown; however, given the potential negative consequences associated with hatchery stocking, it is possible that hatchery programs have adversely affected the genetic integrity of wild populations. To assess the influence of hatchery supplementation on wild populations, we genotyped wild brook trout from 12 river systems and hatchery brook trout from two major hatcheries using 100 microsatellite loci. Genetic analyses of wild trout revealed extensive population genetic structure among and within river systems and significant isolation-by-distance. Hatchery stocks were genetically distinct from wild populations, and most populations showed limited to no evidence of hatchery introgression (<5% hatchery ancestry). Only a single location had a substantial number of hatchery-derived trout and was located in the only river where a local strain is used for supplementation. The amount of hatchery stocking within a watershed did not influence the level of hatchery introgression. Neutral genetic structure of wild populations was influenced by geography with some influence of climate and stocking indices. Overall, our study suggests that long-term stocking has not significantly affected the genetic integrity of wild trout populations, highlighting the variable outcomes of stocking and the need to evaluate the consequences on a case-by-case basis.

2.
PLoS One ; 13(3): e0193925, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566015

RESUMO

Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.


Assuntos
Variação Genética/genética , Truta/genética , Adaptação Fisiológica/genética , Animais , Biodiversidade , Canadá , Ecossistema , Genética Populacional/métodos , Lagos , América do Norte , Fenótipo , Seleção Genética/genética
3.
Immunogenetics ; 70(1): 53-66, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28547520

RESUMO

Many fishes express high levels of intraspecific variability, often linked to resource partitioning. Several studies show that a species' evolutionary trajectory of adaptive divergence can undergo reversals caused by changes in its environment. Such a reversal in neutral genetic and morphological variation among lake trout Salvelinus namaycush ecomorphs appears to be underway in Lake Superior. However, a water depth gradient in neutral genetic divergence was found to be associated with intraspecific diversity in the lake. To investigate patterns of adaptive immunogenetic variation among lake trout ecomorphs, we used Illumina high-throughput sequencing. The population's genetic structure of the major histocompatibility complex (MHC Class IIß exon 2) and 18 microsatellite loci were compared to disentangle neutral and selective processes at a small geographic scale. Both MHC and microsatellite variation were partitioned more by water depth stratum than by ecomorph. Several metrics showed strong clustering by water depth in MHC alleles, but not microsatellites. We report a 75% increase in the number of MHC alleles shared between the predominant shallow and deep water ecomorphs since a previous lake trout MHC study at the same locale (c. 1990s data). This result is consistent with the reverse speciation hypothesis, although adaptive MHC polymorphisms persist along an ecological gradient. Finally, results suggested that the lake trout have multiple copies of the MHC II locus consistent with a historic genomic duplication event. Our findings indicated that conservation approaches for this species could focus on managing various ecological habitats by depth, in addition to regulating the fisheries specific to ecomorphs.


Assuntos
Complexo Principal de Histocompatibilidade/genética , Truta/genética , Truta/imunologia , Alelos , Animais , Evolução Biológica , Variações do Número de Cópias de DNA/genética , Ecossistema , Éxons/genética , Deriva Genética , Variação Genética/genética , Great Lakes Region , Fenômenos Imunogenéticos/genética , Repetições de Microssatélites/genética , Filogenia , Seleção Genética/genética
4.
PLoS One ; 12(9): e0185173, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28931082

RESUMO

DNA barcode sequences were developed from 557 mesopelagic and upper bathypelagic teleost specimens collected in waters off Atlantic Canada. Confident morphological identifications were available for 366 specimens, of 118 species and 93 genera, which yielded 328 haplotypes. Five of the species were novel to the Barcode of Life Database (BOLD). Most of the 118 species conformed to expectations of monophyly and the presence of a "barcode gap", though some known weaknesses in existing taxonomy were confirmed and a deficiency in published keys was revealed. Of the specimens for which no firm morphological identification was available, 156 were successfully identified to species, and a further 11 to genus, using their barcode sequences and a combination of distance- and character-based methods. The remaining 24 specimens were from species for which no reference barcode is yet available or else ones confused by apparent misidentification of publicly available sequences in BOLD. Addition of the new sequences to those previously in BOLD contributed support to recent taxonomic revisions of Chiasmodon and Poromitra, while it also revealed 18 cases of potential cryptic speciation. Most of the latter appear to result from genetic divergence among populations in different ocean basins, while the general lack of strong horizontal environmental gradients within the deep sea has allowed morphology to be conserved. Other examples of divergence appear to distinguish individuals living under the sub-tropical gyre of the North Atlantic from those under that ocean's sub-polar gyre. In contrast, the available sequences for two myctophid species, Benthosema glaciale and Notoscopelus elongatus, showed genetic structuring on finer geographic scales. The observed structure was not consistent with recent suggestions that "resident" populations of myctophids can maintain allopatry despite the mixing of ocean waters. Rather, it indicates that the very rapid speciation characteristic of the Myctophidae is both on-going and detectable using barcodes.


Assuntos
Peixes/classificação , Peixes/genética , Animais , Oceano Atlântico , Canadá , Código de Barras de DNA Taxonômico , DNA Mitocondrial/genética , Bases de Dados Genéticas , Haplótipos
5.
BMC Evol Biol ; 16(1): 219, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756206

RESUMO

BACKGROUND: Adaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycush that considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing. RESULTS: Four putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments. CONCLUSION: We provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake in the world for a species that recently lost considerable genetic diversity and is now in recovery. Unknown is whether observed patterns are a result of an early stage of incipient speciation, gene flow-selection equilibrium, or reverse speciation causing formerly divergent ecotypes to collapse into a single gene pool.


Assuntos
Ecossistema , Variação Genética , Lagos , Truta/genética , Animais , Fluxo Gênico , Genética Populacional , Geografia , Fenótipo , Densidade Demográfica , Seleção Genética , Água
6.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2982-3, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26122337

RESUMO

Three Arctic marine fishes Icelus spatula, Aspidophoroides olrikii and Leptoclinus maculatus have been identified as target species for investigating the effects of ocean warming on population patterns in high-latitude marine habitats around Canada. In preparation for this research, we have resolved whole mitochondrial genome sequences of 16 384, 17 200 and 16 384 bp for each species, respectively. GC content for each species was 47.5%, 44.2% and 45.3%, respectively. Mitogenome gene composition included 13 protein-encoding genes, 2 rRNA and 22 tRNA genes, for I. spatula and L. maculatus, consistent with other teleosts. Only 20 tRNA genes were annotated for A. olrikii, because tRNA-Pro and tRNA-Thr are poorly characterized and aberrantly located in this species.


Assuntos
Peixes/genética , Genoma Mitocondrial , Genômica , Animais , Organismos Aquáticos/genética , Regiões Árticas , Canadá , Peixes/classificação , Rearranjo Gênico , Genes de RNAr , Genômica/métodos , Filogenia , RNA de Transferência/genética , Análise de Sequência de DNA
7.
Parasitol Res ; 111(5): 2077-89, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22875394

RESUMO

Significant progress in our understanding of disease transmission in the wild can be made by examining variation in host-parasite-vector interactions after founder events of the host. This study is the first to document patterns in avian malaria, Plasmodium spp., infecting an endemic New Zealand passerine, Anthornis melanura, at multiple-host subpopulations simultaneously. We assess the Beaudoin hypothesis of bimodal seasonality and use AIC model selection to determine host factors associated with disease prevalence. We had the rare opportunity to test the enemy release hypothesis (ERH) after a recent colonisation event of the bellbird host. Four Plasmodium species were found to infect bellbirds. Temporal patterns of three exotic parasite lineages, including GRW06 Plasmodium (Huffia) elongatum, SYAT05 Plasmodium (Novyella) vaughani and a Plasmodium (Haemamoeba) relictum, were sporadic with low prevalence year round. The fourth species was an endemic parasite, an unresolved Plasmodium (Novyella) sp. here called ANME01, which exhibited a strong winter peak at the source subpopulations possibly indicating greater immune stressors at the densely populated source site. At the colonies, we observed bimodal seasonality in the prevalence of ANME01 with autumn and spring peaks. These infection peaks were male-biased, and the amplitude of sex bias was more pronounced at the newer colony perhaps due to increased seasonal competition resulting from territory instability. We observed a decrease in parasite species diversity and increase in body condition from source to founder sites, but statistical differences in the direct relationship between body condition and malaria prevalence between source and colony were weak and significant only during winter. Though our data did not strongly support the ERH, we highlight the benefits of 'conspecific release' associated with decreased population density and food competition. Our findings contribute to the identification of ecological and environmental drivers of variability in malaria transmission, which is valuable for predicting the consequences of both natural range expansions, as well as host re-introductions resulting from intensive conservation practices.


Assuntos
Malária Aviária/epidemiologia , Malária Aviária/transmissão , Animais , Malária Aviária/parasitologia , Nova Zelândia/epidemiologia , Passeriformes/parasitologia , Plasmodium/classificação , Plasmodium/isolamento & purificação , Plasmodium/patogenicidade , Prevalência , Estações do Ano , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...