Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JTO Clin Res Rep ; 4(10): 100559, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37732171

RESUMO

Introduction: Thoracic radiotherapy (TRT) is increasingly used in patients receiving osimertinib for advanced NSCLC, and the risk of pneumonitis is not established. We investigated the risk of pneumonitis and potential risk factors in this population. Methods: We performed a multi-institutional retrospective analysis of patients under active treatment with osimertinib who received TRT between April 2016 and July 2022 at two institutions. Clinical characteristics, including whether osimertinib was held during TRT and pneumonitis incidence and grade (Common Terminology Criteria for Adverse Events version 5.0) were documented. Logistic regression analysis was performed to identify risk factors associated with grade 2 or higher (2+) pneumonitis. Results: The median follow-up was 10.2 months (range: 1.9-53.2). Of 102 patients, 14 (13.7%) developed grade 2+ pneumonitis, with a median time to pneumonitis of 3.2 months (range: 1.5-6.3). Pneumonitis risk was not significantly increased in patients who continued osimertinib during TRT compared with patients who held osimertinib during TRT (9.1% versus 15.0%, p = 0.729). Three patients (2.9%) had grade 3 pneumonitis, none had grade 4, and two patients had grade 5 events (2.0%, diagnosed 3.2 mo and 4.4 mo post-TRT). Mean lung dose was associated with the development of grade 2+ pneumonitis in multivariate analysis (OR = 1.19, p = 0.021). Conclusions: Although the overall rate of pneumonitis in patients receiving TRT and osimertinib was relatively low, there was a small risk of severe toxicity. The mean lung dose was associated with an increased risk of developing pneumonitis. These findings inform decision-making for patients and providers.

2.
Sci Rep ; 6: 27252, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27264498

RESUMO

Flying animals accomplish high-speed navigation through fields of obstacles using a suite of sensory modalities that blend spatial memory with input from vision, tactile sensing, and, in the case of most bats and some other animals, echolocation. Although a good deal of previous research has been focused on the role of individual modes of sensing in animal locomotion, our understanding of sensory integration and the interplay among modalities is still meager. To understand how bats integrate sensory input from echolocation, vision, and spatial memory, we conducted an experiment in which bats flying in their natural habitat were challenged over the course of several evening emergences with a novel obstacle placed in their flight path. Our analysis of reconstructed flight data suggests that vision, echolocation, and spatial memory together with the possible exercise of an ability in using predictive navigation are mutually reinforcing aspects of a composite perceptual system that guides flight. Together with the recent development in robotics, our paper points to the possible interpretation that while each stream of sensory information plays an important role in bat navigation, it is the emergent effects of combining modalities that enable bats to fly through complex spaces.


Assuntos
Quirópteros/fisiologia , Ecolocação/fisiologia , Voo Animal/fisiologia , Animais , Comportamento Animal/fisiologia , Ecossistema , Robótica , Percepção Espacial , Memória Espacial/fisiologia , Visão Ocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...