Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 466: 133554, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246057

RESUMO

Over the past 100 years, extensive oxidation of As-bearing sulfide-rich tailings from the abandoned Long Lake Gold Mine (Canada) has resulted in the formation of acid mine drainage (pH 2.0-3.9) containing high concentrations of dissolved As (∼400 mg L-1), SO42-, Fe and other metals. Dissolved As is predominantly present as As(III), with increased As(V) near the tailings surface. Pore-gas O2 is depleted to < 1 vol% in the upper 30-80 cm of the tailings profile. The primary sulfides, pyrite and arsenopyrite, are highly oxidized in the upper portions of the tailings. Elevated proportions of sulfide-oxidizing prokaryotes are present in this zone (mean 32.3% of total reads). The tailings are underlain by sediments rich in organic C. Enrichment in δ34S-SO4 in pore-water samples in the organic C-rich zone is consistent with dissimilatory sulfate reduction. Synchrotron-based spectroscopy indicates an abundance of ferric arsenate phases near the impoundment surface and the presence of secondary arsenic sulfides in the organic-C beneath the tailings. The persistence of elevated As concentrations beneath the tailings indicates precipitation of secondary As sulfides is not sufficient to completely remove dissolved As. The oxidation of sulfides and release of As is expected to continue for decades. The findings will inform future remediation efforts and provide a foundation for the long-term monitoring of the effectiveness of the remediation program.

2.
J Hazard Mater ; 451: 131192, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921421

RESUMO

In mine tailings, precipitation of secondary minerals may cement the tailings material and form cemented crusts or hardpans. Hardpans typically form beneath the surface of reactive tailings. However, at the former Long Lake Gold Mine near Sudbury, Ontario, cemented crusts formed in a clean sand cover above the tailings. We applied mineralogical and geochemical techniques to investigate the formation of these cemented crusts. Representative samples were collected from the sand cover and vertical cores from the underlying tailings. Elevated concentrations of arsenic (As), iron (Fe), and sulfur (S) in the sand cover indicate the upward transport of sulfide-mineral oxidation products. The shallow porewater of the tailings is acidic (pH 4 - 6) and contains elevated concentrations of As (up to 346 mg/L), Fe (up to 1844 mg/L), and SO4 (up to 12,000 mg/L). Mineralogical observations indicate that primary sulfide minerals in the near-surface tailings display moderate to strong oxidation, and secondary Fe-arsenate and jarosite minerals are formed both in the near-surface tailings and the sand cover. Upward migration of sulfide-mineral oxidation products leads to the formation of cemented crusts, which with continuing erosion, represent a long-term source of pollution to the surrounding environment.

3.
J Hazard Mater ; 424(Pt A): 127295, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34601408

RESUMO

Acid mine drainage and the associated contaminants, including As and metals, are ongoing environmental issues. Passive remediation technologies have the potential to remove As from mine waste effluents. A series of laboratory column experiments was conducted to evaluate the effectiveness of varying mixtures of organic carbon (OC), zero-valent iron (ZVI), and limestone for the treatment of As, metals, SO42-, and acidity in groundwater from an abandoned gold mine. The onset of bacterially-mediated SO42- reduction was indicated by a decrease in Eh, a decline in aqueous SO42- concentrations coupled with enrichment of δ34S, and the presence of sulfate-reducing bacteria and H2S. Removal of As was observed within the first 3 cm of reactive material, to values below 10 µg L-1, representing > 99.9% removal. An increase in pH from 3.5 to circumneutral values and removal of metals including Al, Cu, and Zn was also observed. Synchrotron results suggest As was removed through precipitation of As-crystalline phases such as realgar and orpiment, or through adsorption as As(V) on ferrihydrite. The results indicate the potential for a mixture of OC and ZVI to remove As from acidic, mine-impacted water.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Carbono , Ferro , Laboratórios
4.
J Hazard Mater ; 412: 125130, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33529829

RESUMO

Galena and Pb-bearing secondary phases are the main sources of Pb in the terrestrial environment. Oxidative dissolution of galena releases aqueous Pb and SO4 to the surficial environment and commonly causes the formation of anglesite (in acidic environments) or cerussite (in alkaline environments). However, conditions prevalent in weathering environments are diverse and different reaction mechanisms reflect this variability at various scales. Here we applied complementary techniques across a range of scales, from nanometers to 10 s of meters, to study the oxidation of galena and accumulation of secondary phases that influence the release and mobilization of Pb within a sulfide-bearing waste-rock pile. Within the neutral-pH pore-water environment, the oxidation of galena releases Pb ions resulting in the formation of secondary Pb-bearing carbonate precipitates. Cerussite is the dominant phase and shannonite is a possible minor phase. Dissolved Cu from the pore water reacts at the surface of galena, forming covellite at the interface. Nanometer scale characterization suggests that secondary covellite is intergrown with secondary Pb-bearing carbonates at the interface. A small amount of the S derived from galena is sequestered with the secondary covellite, but the majority of the S is oxidized to sulfate and released to the pore water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...