Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Clin Transl Neurol ; 10(10): 1790-1801, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37545094

RESUMO

OBJECTIVE: Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder caused by autosomal-dominant pathogenic variants in either the TSC1 or TSC2 gene, and it is characterized by hamartomas in multiple organs, such as skin, kidney, lung, and brain. These changes can result in epilepsy, learning disabilities, and behavioral complications, among others. The mechanistic link between TSC and the mechanistic target of the rapamycin (mTOR) pathway is well established, thus mTOR inhibitors can potentially be used to treat the clinical manifestations of the disorder, including epilepsy. METHODS: In this study, we tested the efficacy of a novel mTOR catalytic inhibitor (here named Tool Compound 1 or TC1) previously reported to be more brain-penetrant compared with other mTOR inhibitors. Using a well-characterized hypomorphic Tsc2 mouse model, which displays a translationally relevant seizure phenotype, we tested the efficacy of TC1. RESULTS: Our results show that chronic treatment with this novel mTOR catalytic inhibitor (TC1), which affects both the mTORC1 and mTORC2 signaling complexes, reduces seizure burden, and extends the survival of Tsc2 hypomorphic mice, restoring species typical weight gain over development. INTERPRETATION: Novel mTOR catalytic inhibitor TC1 exhibits a promising therapeutic option in the treatment of TSC.


Assuntos
Epilepsia , Esclerose Tuberosa , Camundongos , Animais , Esclerose Tuberosa/tratamento farmacológico , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteínas Supressoras de Tumor/genética , Inibidores de MTOR , Serina-Treonina Quinases TOR/genética , Modelos Animais de Doenças , Epilepsia/genética , Convulsões/tratamento farmacológico
2.
Hum Mol Genet ; 28(17): 2952-2964, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31174205

RESUMO

DEPDC5 is now recognized as one of the genes most often implicated in familial/inherited focal epilepsy and brain malformations. Individuals with pathogenic variants in DEPDC5 are at risk for epilepsy, associated neuropsychiatric comorbidities and sudden unexplained death in epilepsy. Depdc5flox/flox-Syn1Cre (Depdc5cc+) neuronal-specific Depdc5 knockout mice exhibit seizures and neuronal mTORC1 hyperactivation. It is not known if Depdc5cc+ mice have a hyperactivity/anxiety phenotype, die early from terminal seizures or whether mTOR inhibitors rescue DEPDC5-related seizures and associated comorbidities. Herein, we report that Depdc5cc+ mice were hyperactive in open-field testing but did not display anxiety-like behaviors on the elevated-plus maze. Unlike many other mTOR-related models, Depdc5cc+ mice had minimal epileptiform activity and rare seizures prior to seizure-induced death, as confirmed by video-EEG monitoring. Treatment with the mTORC1 inhibitor rapamycin starting after 3 weeks of age significantly prolonged the survival of Depdc5cc+ mice and partially rescued the behavioral hyperactivity. Rapamycin decreased the enlarged brain size of Depdc5cc+ mice with corresponding decrease in neuronal soma size. Loss of Depdc5 led to a decrease in the other GATOR1 protein levels (NPRL2 and NPRL3). Rapamycin failed to rescue GATOR1 protein levels but rather rescued downstream mTORC1 hyperactivity as measured by phosphorylation of S6. Collectively, our data provide the first evidence of behavioral alterations in mice with Depdc5 loss and support mTOR inhibition as a rational therapeutic strategy for DEPDC5-related epilepsy in humans.


Assuntos
Proteínas Ativadoras de GTPase/deficiência , Estudos de Associação Genética , Predisposição Genética para Doença , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Neurônios/metabolismo , Animais , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/mortalidade , Imunofluorescência , Genes Letais , Estudos de Associação Genética/métodos , Genótipo , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Fenótipo , Transdução de Sinais , Sirolimo/farmacologia
3.
Epilepsy Behav ; 89: 94-98, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30399547

RESUMO

High-voltage rhythmic electroencephalographic (EEG) spikes have been recorded in wildtype (WT) rats during periods of light slow-wave sleep and passive wakefulness. The source of this activity is unclear but has been attributed to either an inherent form of absence epilepsy or a normal feature of rodent sleep EEG. In contrast, little is known about epileptiform spikes in WT mice. We thus characterize and quantify epileptiform discharges in WT mice for the first time. Thirty-six male WT C57 mice with 24-h wireless telemetry video-EEG recordings were manually scored by blinded reviewers to mark individual spikes and spike trains. Epileptiform spikes were detected in 100% of the recorded WT mice, and spike trains of at least three spikes were recorded in 90% of mice. The spikes were more frequent during the day than at night and were inversely correlated to each animal's locomotor activity. However, the discharges were not absent during active nighttime periods. These discharges may indicate a baseline tendency toward epileptic seizures or perhaps are benign variants of normal rodent background EEG. Nevertheless, a better understanding of baseline WT EEG activity will aid in differentiating pathological and normal EEG activity in mouse epilepsy models.


Assuntos
Potenciais de Ação/fisiologia , Eletroencefalografia/métodos , Convulsões/fisiopatologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Convulsões/genética , Sono/fisiologia , Telemetria/métodos , Gravação em Vídeo , Vigília/fisiologia
4.
Plant Mol Biol ; 68(1-2): 173-83, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18553138

RESUMO

The presence and function of several proteins secreted into floral nectars has been described in recent years. Here we report the presence of at least eight distinct proteins secreted into the floral nectar of the tropical tree Jacaranda mimosifolia (Bignoniaceae). Steps were initiated to identify and characterize these proteins in order to determine potential functions. The N-terminal sequence of the major Jacaranda nectar protein, JNP1, at 43 kDa contained similarity with members of the plant GDSL lipase/esterase gene family. Based upon this sequence, a full-length cDNA was isolated and predicted to encode a mature protein of 339 amino acids with a molecular mass of 37 kDa. Both raw nectar and heterologously expressed JNP1 displayed lipase/esterase activities. Interestingly, J. mimosifolia flowers produce an opaque, white colored nectar containing spherical, lipophilic particles approximately 5 microm in diameter and smaller. GS-MS analysis also identified the accumulation of free fatty acids within the nectar. It is proposed that JNP1 hydrolyzes Jacaranda nectar lipids with the concomitant release of free fatty acids. Potential functions of JNP1 in relation to pollinator attraction and prevention of microbial growth within nectar are briefly discussed.


Assuntos
Bignoniaceae/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Flores/enzimologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Bignoniaceae/genética , Western Blotting , Hidrolases de Éster Carboxílico/genética , Eletroforese em Gel de Poliacrilamida , Ácidos Graxos/metabolismo , Flores/genética , Cromatografia Gasosa-Espectrometria de Massas , Dados de Sequência Molecular , Proteínas de Plantas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...