Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Proteins Proteom ; 1867(6): 604-615, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30954578

RESUMO

In mammalian cells, human 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a rate-limiting endoplasmic reticulum (ER) bonded enzyme, plays a central role in the cholesterol homeostasis via the negative feedback mechanism. The present study indicates that the interactions of novel peptides with the catalytic domain of HMGCR, provides an alternative therapeutic candidate for reducing cholesterol. The potential natural origin of HMGCR peptide inhibitors were filtered from the peptide library using the molecular docking, which revealed three strong candidates for inhibition. This information was used for synthesizing peptides, which were evaluated for inhibition against HMGCR. The stronger docking interactions were confirmed by experimental dissociation constant (KD) values of 9.1 × 10-9 M, 1.4 × 10-8 M and 1.2 × 10-8 M for peptides NALEPDNRIESEGG (Pep-1), NALEPDNRIES (Pep-2) and PFVKSEPIPETNNE (Pep-3) respectively. The immunological based interactions show a strong evidence of peptide-HMGCR complexes. The LDL uptake showed enhancements after treatments with peptides in the extracellular environment of HepG2 cells, which was further, corroborated through increase in the immunofluorescence signal of the localized LDL-R protein expression on the cell membrane. The results showed that the mRNA and protein expression of transcription factors were significantly up-regulated showing regulation of cholesterol biosynthesis in peptide treated HepG2 cells. The binding of transcription factors, sterol regulatory element (SRE) and cAMP-response element (CRE) on HMGCR promotor further confirms the cholesterol biosynthesis regulation. All the above results suggested a key role of peptide/s in alleviating cholesterol accumulation in tissue via inhibition of rate-limiting HMGCR enzyme.


Assuntos
LDL-Colesterol/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Peptídeos/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Domínio Catalítico/efeitos dos fármacos , Membrana Celular , Células Hep G2 , Homeostase , Humanos , Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/genética , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/química , Receptores de LDL/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
2.
J Biomol Struct Dyn ; 25(5): 543-51, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18282009

RESUMO

The metabolism of Thiobacillus ferrooxidans involves electron transfer from the Fe+2 ions in the extracellular environment to the terminal oxygen in the bacterial cytoplasm through a series of periplasmic proteins like Rusticyanin (RCy), Cytochrome (Cyt c4), and Cytochrome oxidase (CcO). The energy minimization and MD studies reveal the stabilization of the three redox proteins in their ternary complex through the direct and water mediated H-bonds and electrostatic interaction. The surface exposed polar residues of the three proteins, i.e., RCy (His 143, Thr 146, Lys 81, Glu 20), Cyt c4 (Asp 5, 15, 52, Ser 14, Glu 61), and CcO (Asp 135, Glu 126, 140, 142, Thr 177) formed the intermolecular hydrogen bonds and stabilized the ternary complex. The oxygen (Oepsilon1) of Glu 126, 140, and 142 on subunit II of the CcO interact to the exposed side-chain and Ob atoms of the Asp 52 of Cyt c4 and Glu 20 and Leu 12 of RCy. The Asp 135 of subunit II also forms H-bond with the Nepsilon atom of Lys 81 of RCy. The Oepsilon1 of Glu 61 of Cyt c4 is also H-bonded to Ogamma atom of Thr 177 of CcO. Solvation followed by MD studies of the ternary protein complex revealed the presence of seven water molecules in the interfacial region of the interacting proteins. Three of the seven water molecules (W 79, W 437, and W 606) bridged the three proteins by forming the hydrogen bonded network (with the distances approximately 2.10-2.95 A) between the Lys 81 (RCy), Glu 61 (Cyt c4), and Asp 135 (CcO). Another water molecule W 603 was H-bonded to Tyr 122 (CcO) and interconnected the Lys 81 (RCy) and Asp 135 (CcO) through the water molecules W 606 and W 437. The other two water molecules (W 21 and W 455) bridged the RCy to Cyt c4 through H-bonds, whereas the remaining W 76 interconnected the His 53 (Cytc4) to Glu 126 (CcO) with distances approximately 2.95-3.0 A.


Assuntos
Azurina/química , Proteínas de Bactérias/química , Grupo dos Citocromos c/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexos Multiproteicos/química , Estrutura Terciária de Proteína , Transporte de Elétrons , Ligação de Hidrogênio , Modelos Moleculares , Oxirredução , Thiobacillus/química
3.
J Biomol Struct Dyn ; 25(2): 157-64, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17718594

RESUMO

Rusticyanin (RCy) mediated transfer of electron to Cytochrome C(4) (Cytc(4)) from the extracellular Fe(+2) ion is primarily involved in the Thiobacillus ferrooxidans induced bio-leaching of pyrite ore and also in the metabolism of this acidophilic bacteria. The modeling studies have revealed the two possible mode of RCy-Cytc(4) complexation involving nearly the same stabilization energy approximately -15 x 10(3) kJ/mol, one through N-terminal Asp 15 and another -C terminal Glu 121 of Cytc(4) with the Cu-bonded His 143 of RCy. The Asp 15:His 143 associated complex (DH) of Cytc(4)-RCy was stabilized by the intermolecular H-bonds of the carboxyl oxygen atoms O(delta1) and O(delta2) of Asp 15 with the Nepsilon-atom of His 143 and O(b) atoms of Ala 8 and Asp 5 (of Cytc(4)) with the Thr 146 and Phe 51 (of RCy). But the other Glu 121:His 143 associated complex (EH) of Cytc(4)-RCy was stabilized by the H-bonding interaction of the oxygen atoms O(epsilon1) and O(epsilon2) of Glu 121 with the Nepsilon and Ogamma atoms of His 143 and Thr 146 of RCy. The six water molecules were present in the binding region of the two proteins in the energy minimized autosolvated DH and EH-complexes. The MD studies also revealed the presence of six interacting water molecules at the binding region between the two proteins in both the complexes. Several residues Gly 82 and 84, His 143 (RCy) were participated through the water mediated (W 389, W 430, W 413, W 431, W 373, and W 478) interaction with the Asp 15, Ile 82, and 62, Tyr 63 (Cytc(4)) in DH complex, whereas in EH complex the Phe 51, Asn 80, Tyr 146 (RCy) residues were observed to interact with Asn 108, Met 120, Glu 121 (of Cytc(4)) through the water molecules W 507, W 445, W 401, W 446, and W 440. The direct water mediated (W 478) interaction of His 143 (RCy) to Asp 15 (of Cytc(4)) was observed only in the DH complex but not in EH. These direct and water mediated H-bonding between the two respective proteins and the binding free energy with higher interacting buried surface area of the DH complex compare to other EH complex have indicated an alternative possibility of the electron transfer route through the interaction of His 143 of RCy and the N-terminal Asp 15 of Cytc(4).


Assuntos
Azurina/química , Grupo dos Citocromos c/química , Transporte de Elétrons/fisiologia , Modelos Moleculares , Sequência de Aminoácidos , Azurina/genética , Azurina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Simulação por Computador , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Ligação de Hidrogênio , Dados de Sequência Molecular , Complexos Multiproteicos , Oxirredução , Conformação Proteica
4.
J Biomol Struct Dyn ; 24(4): 369-78, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17206852

RESUMO

The invariant water molecular interaction involving in the Rusticyanin of Thiobacillus ferrooxidans is thought to be important for its molecular complexation with other proteins at differential acidophilic situation. The comparative analysis of the different x-ray, energy minimized, and auto solvated structures of Rusticyanin revealed the presence of five specific invariant bound water molecules (among the approximately 150 water molecules per monomer) in the crystals. The five W 205, W 206, W 112, W 214, and W 221 water molecules (in Rusticyanin PDB code: 1RCY) were seem to be invariant in all the seven structures (PDB codes: 1RCY, 1A3Z, 1A8Z, 1E3O, 1GY1, 1GY2, 2CAL). Among the five conserved water molecules the W 221 (of 1 RCY or the equivalent water molecules in the other oxidized form of Rusticyanin structures) had endowed an interesting coordination potentiality to Cu(+2) ion during the energy minimization. The W 221 was observed to approach toward the tetrahedrally bonded Cu(+2) ion through the opposite (or trans) route of metal-bonded Met 148. This direct water molecular coordination affected the tetrahedral geometry of Cu(+2) to trigonal bipyramidal. Presumably this structural dynamics at the Cu(+2) center could involve in the electron transport process during protein-protein complexation.


Assuntos
Azurina/química , Cobre/análise , Azurina/genética , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Mutagênese , Conformação Proteica , Proteínas Recombinantes/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...