Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 229(2): 831-844, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918833

RESUMO

Conifer mortality rates are increasing in western North America, but the physiological mechanisms underlying this trend are not well understood. We examined tree-ring-based radial growth along with stable carbon (C) and oxygen (O) isotope composition (δ13 C and δ18 O, respectively) of dying and surviving conifers at eight old-growth forest sites across a strong moisture gradient in the western USA to retrospectively investigate mortality predispositions. Compared with surviving trees, lower growth of dying trees was detected at least one decade before mortality at seven of the eight sites. Intrinsic water-use efficiency increased over time in both dying and surviving trees, with a weaker increase in dying trees at five of the eight sites. C starvation was a strong correlate of conifer mortality based on a conceptual model incorporating growth, δ13 C, and δ18 O. However, this approach does not capture processes that occur in the final months of survival. Ultimately, C starvation may lead to increased mortality vulnerability, but hydraulic failure or biotic attack may dominate the process during the end stages of mortality in these conifers.


Assuntos
Traqueófitas , Isótopos de Carbono/análise , Secas , América do Norte , Estudos Retrospectivos , Árvores , Água
2.
Proc Natl Acad Sci U S A ; 114(5): 881-884, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28100493

RESUMO

Radiocarbon content in tree rings can be an excellent proxy of the past incoming cosmic ray intensities to Earth. Although such past cosmic ray variations have been studied by measurements of 14C contents in tree rings with ≥10-y time resolution for the Holocene, there are few annual 14C data. There is a little understanding about annual 14C variations in the past, with the exception of a few periods including the AD 774-775 14C excursion where annual measurements have been performed. Here, we report the result of 14C measurements using the bristlecone pine tree rings for the period from 5490 BC to 5411 BC with 1- to 2-y resolution, and a finding of an extraordinarily large 14C increase (20‰) from 5481 BC to 5471 BC (the 5480 BC event). The 14C increase rate of this event is much larger than that of the normal grand solar minima. We propose the possible causes of this event are an unknown phase of grand solar minimum, or a combination of successive solar proton events and a normal grand solar minimum.

3.
Ecol Appl ; 20(6): 1598-614, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20945762

RESUMO

Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire-scar fire history reconstructions has been hampered due to a lack of empirical comparisons with independent fire history data sources. We carried out such a comparison in a 2780-ha ponderosa pine forest on Mica Mountain in southern Arizona (USA) for the time period 1937-2000. Using documentary records of fire perimeter maps and ignition locations, we compared reconstructions of key spatial and temporal fire regime parameters developed from documentary fire maps and independently collected fire-scar data (n = 60 plots). We found that fire-scar data provided spatially representative and complete inventories of all major fire years (> 100 ha) in the study area but failed to detect most small fires. There was a strong linear relationship between the percentage of samples recording fire scars in a given year (i.e., fire-scar synchrony) and total area burned for that year (y = 0.0003x + 0.0087, r2 = 0.96). There was also strong spatial coherence between cumulative fire frequency maps interpolated from fire-scar data and ground-mapped fire perimeters. Widely reported fire frequency summary statistics varied little between fire history data sets: fire-scar natural fire rotations (NFR) differed by < 3 yr from documentary records (29.6 yr); mean fire return intervals (MFI) for large-fire years (i.e., > or = 25% of study area burned) were identical between data sets (25.5 yr); fire-scar MFIs for all fire years differed by 1.2 yr from documentary records. The known seasonal timing of past fires based on documentary records was furthermore reconstructed accurately by observing intra-annual ring position of fire scars and using knowledge of tree-ring growth phenology in the Southwest. Our results demonstrate clearly that representative landscape-scale fire histories can be reconstructed accurately from spatially distributed fire-scar samples.


Assuntos
Ecossistema , Monitoramento Ambiental , Incêndios , Pinus ponderosa/fisiologia , Árvores/fisiologia , Arizona , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...