Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Opt Mater ; 1(5): 1043-1051, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37255504

RESUMO

Aggregation-induced quenching often restricts emissive performance of optically active solid materials with embedded fluorescent dyes. Delignified and nanoporous wood readily adsorbs organic dyes and is investigated as a host material for rhodamine 6G (R6G). High concentration of R6G (>35 mM) is achieved in delignified wood without any ground-state dye aggregation. To evaluate emissive performance, a solid-state random dye laser is prepared using the dye-doped wood substrates. The performance in terms of lasing threshold and efficiency was improved with increased dye content due to the ability of delignified wood to disperse R6G.

2.
ACS Appl Mater Interfaces ; 11(38): 35451-35457, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31483595

RESUMO

Transparent wood (TW) is an emerging optical material combining high optical transmittance and haze for structural applications. Unlike nonscattering absorbing media, the thickness dependence of light transmittance for TW is complicated because optical losses are also related to increased photon path length from multiple scattering. In the present study, starting from photon diffusion equation, it is found that the angle-integrated total light transmittance of TW has an exponentially decaying dependence on sample thickness. The expression reveals an attenuation coefficient which depends not only on the absorption coefficient but also on the diffusion coefficient. The total transmittance and thickness were measured for a range of TW samples, from both acetylated and nonacetylated balsa wood templates, and were fitted according to the derived relationship. The fitting gives a lower attenuation coefficient for the acetylated TW compared to the nonacetylated one. The lower attenuation coefficient for the acetylated TW is attributed to its lower scattering coefficient or correspondingly lower haze. The attenuation constant resulted from our model hence can serve as a singular material parameter that facilitates cross-comparison of different sample types, at even different thicknesses, when total optical transmittance is concerned. The model was verified with two other TWs (ash and birch) and is in general applicable to other scattering media.

3.
Opt Lett ; 44(12): 2962-2965, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199356

RESUMO

We report on the study of polarization properties of light propagating through transparent wood (TW), which is an anisotropically scattering medium, and consider two cases: completely polarized and totally unpolarized light. It was demonstrated that scattered light distribution is affected by the polarization state of incident light. Scattering is the most efficient for light polarized parallel to cellulose fibers. Furthermore, unpolarized light becomes partially polarized (with a polarization degree of 50%) after propagating through the TW. In the case of totally polarized incident light, however, the degree of polarization of transmitted light is decreased, in an extreme case to a few percent, and reveals an unusual angular dependence on the material orientation. The internal hierarchical complex structure of the material, in particular cellulose fibrils organized in lamellae, is believed to be responsible for the change of the light polarization degree. It was demonstrated that the depolarization properties are determined by the angle between the polarization of light and the wood fibers, emphasizing the impact of their internal structure, unique for different wood species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...