Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 11328, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383870

RESUMO

In the present work, a catalyst-free physical vapour deposition method is used to synthesize high yield of Bi2Se3 nanoribbons. By replacing standard glass or quartz substrates with aluminium covered with ultrathin porous anodized aluminium oxide (AAO), the number of synthesized nanoribbons per unit area can be increased by 20-100 times. The mechanisms of formation and yield of the nanoribbons synthesized on AAO substrates having different arrangement and size of pores are analysed and discussed. It is shown that the yield and average length of the nanoribbons can base tuned by adjustment of the synthesis parameters. Analysis of magnetotransport measurements for the individual Bi2Se3 nanoribbons transferred on a Si/SiO2 substrate show the presence of three different populations of charge carriers, originating from the Dirac surface states, bulk carriers and carriers from a trivial 2DEG from an accumulation layer at the Bi2Se3 nanoribbon interface with the substrate.

2.
Sci Rep ; 9(1): 4791, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886194

RESUMO

Knowledge of nucleation and further growth of Bi2Se3 nanoplates on different substrates is crucial for obtaining ultrathin nanostructures and films of this material by physical vapour deposition technique. In this work, Bi2Se3 nanoplates were deposited under the same experimental conditions on different types of graphene substrates (as-transferred and post-annealed chemical vapour deposition grown monolayer graphene, monolayer graphene grown on silicon carbide substrate). Dimensions of the nanoplates deposited on graphene substrates were compared with the dimensions of the nanoplates deposited on mechanically exfoliated mica and highly ordered pyrolytic graphite flakes used as reference substrates. The influence of different graphene substrates on nucleation and further lateral and vertical growth of the Bi2Se3 nanoplates is analysed. Possibility to obtain ultrathin Bi2Se3 thin films on these substrates is evaluated. Between the substrates considered in this work, graphene grown on silicon carbide is found to be the most promising substrate for obtaining of 1-5 nm thick Bi2Se3 films.

3.
ACS Appl Mater Interfaces ; 8(19): 12257-62, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27111150

RESUMO

We demonstrate a simple low-cost method of preparation of layered devices for opto- and thermoelectric applications. The devices consist of a functional Bi2Se3 layer of randomly oriented nanoplates and flexible nanobelts enclosed between two flat indium tin oxide (ITO) electrodes. The number of functional interconnections between the ITO electrodes and correspondingly the efficiency of the device can be increased by gradual nanoelectromechanical (NEM) switching of flexible individual Bi2Se3 nanobelts in the circuit. NEM switching is achieved through applying an external voltage to the device. For the first time, we investigate in situ NEM switching and breakdown parameters of Bi2Se3 nanobelts, visualize the processes occurring in the device under the influence of applied external voltage, and establish the limitations to the possible operational conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...