Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20733, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007559

RESUMO

Quantum-tunneling metal-insulator-metal (MIM) diodes have emerged as a significant area of study in the field of materials science and electronics. Our previous work demonstrated the successful fabrication of these diodes using atmospheric pressure chemical vapor deposition (AP-CVD), a scalable method that surpasses traditional vacuum-based methods and allows for the fabrication of high-quality Al2O3 films with few pinholes. Here, we show that despite their extremely small size 0.002 µm2, the MIM nanodiodes demonstrate low resistance at zero bias. Moreover, we have observed a significant enhancement in resistance by six orders of magnitude compared to our prior work, Additionally, we have achieved a high responsivity of 9 AW-1, along with a theoretical terahertz cut-off frequency of 0.36 THz. Our approach provides an efficient alternative to cleanroom fabrication, opening up new opportunities for manufacturing terahertz-Band devices. The results of our study highlight the practicality and potential of our method in advancing nanoelectronics. This lays the foundation for the development of advanced quantum devices that operate at terahertz frequencies, with potential applications in telecommunications, medical imaging, and security systems.

2.
Materials (Basel) ; 16(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110108

RESUMO

We propose a scheme for detecting single microwave photons using dipole-induced transparency (DIT) in an optical cavity resonantly coupled to a spin-selective transition of a negatively charged nitrogen-vacancy (NV-) defect in diamond crystal lattices. In this scheme, the microwave photons control the interaction of the optical cavity with the NV- center by addressing the spin state of the defect. The spin, in turn, is measured with high fidelity by counting the number of reflected photons when the cavity is probed by resonant laser light. To evaluate the performance of the proposed scheme, we derive the governing master equation and solve it through both direct integration and the Monte Carlo approach. Using these numerical simulations, we then investigate the effects of different parameters on the detection performance and find their corresponding optimized values. Our results indicate that detection efficiencies approaching 90% and fidelities exceeding 90% could be achieved when using realistic optical and microwave cavity parameters.

3.
Opt Express ; 28(5): 6835-6845, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225922

RESUMO

We present a scheme for realizing deterministic single-photon subtraction in a coupled single quantum dot-cavity solid-state system. The device consists of a charged quantum dot and its coupled bimodal photonic crystal cavity with a moderate magnetic field applied in a Voigt configuration. We numerically simulate injection of optical pulses into one of the cavity modes and show that the system deterministically transfers one photon into the second cavity mode for input pulses in the form of both Fock states and coherent states. This device has potential in the application of a compact and integrated solid-state based device for quantum information processing.

4.
Light Sci Appl ; 9: 23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133126

RESUMO

Chirality refers to a geometric phenomenon in which objects are not superimposable on their mirror image. Structures made of nanoscale chiral elements can exhibit chiroptical effects, such as dichroism for left- and right-handed circularly polarized light, which makes these structures highly suitable for applications ranging from quantum information processing and quantum optics to circular dichroism spectroscopy and molecular recognition. At the same time, strong chiroptical effects have been challenging to achieve even in synthetic optical media, and chiroptical effects for light with normal incidence have been speculated to be prohibited in thin, lossless quasi-two-dimensional structures. Here, we report an experimental realization of a giant chiroptical effect in a thin monolithic photonic crystal mirror. Unlike conventional mirrors, our mirror selectively reflects only one spin state of light while preserving its handedness, with a near-unity level of circular dichroism. The operational principle of the photonic crystal mirror relies on guided-mode resonance (GMR) with a simultaneous excitation of leaky transverse electric (TE-like) and transverse magnetic (TM-like) Bloch modes in the photonic crystal slab. Such modes are not reliant on the suppression of radiative losses through long-range destructive interference, and even small areas of the photonic crystal exhibit robust circular dichroism. Despite its simplicity, the mirror strongly outperforms earlier reported structures and, contrary to a prevailing notion, demonstrates that near-unity reflectivity contrast for opposite helicities is achievable in a quasi-two-dimensional structure.

5.
Small ; 15(46): e1904415, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31577386

RESUMO

Herein, the previously unrealized ability to grow nanorods and nanotubes of 2D materials using femtosecond laser irradiation is demonstrated. In as short as 20 min, nanorods of tungsten disulfide, molybdenum disulfide, graphene, and boron nitride are grown in solutions. The technique fragments nanoparticles of the 2D materials from bulk flakes and leverages molecular scale alignment by nonresonant intense laser pulses to direct their assembly into nanorods up to several micrometers in length. The laser treatment process is found to induce phase transformations in some of the materials, and also results in the modification of the nanorods with functional groups from the solvent atoms. Notably, the WS2 nanoparticles, which are ablated from semiconducting 2H WS2 crystallographic phase flakes, reassemble into nanorods consisting of the 1T metallic phase. Due to this transition, and the 1D nature of the fabricated nanorods, the WS2 nanorods display substantial improvements in electrical conductivity and optical transparency when employed as transparent conductors.

6.
Opt Express ; 27(13): 17592-17600, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252716

RESUMO

We study the spontaneous Raman emission in an ensemble of laser-cooled three-level Λ-type atoms confined inside a hollow-core photonic-bandgap fiber using a novel approach to observe the process. Instead of detecting the emitted light, we measure the number of atoms in the ground state as a function of Raman pump time, which eliminates the need to suppress the pump photons with a high-resolution filter. We describe how this measurement can be used to detect superradiant emission from the atomic ensembles and estimate the number of atoms required to observe Raman superradiance in atomic clouds inside a hollow-core fiber.

7.
Appl Opt ; 56(16): 4680-4684, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047600

RESUMO

We present a lithographically defined, ultra-high vacuum (UHV) compatible on-chip structure acting as a mechanical splicer that allows efficient injection of light from a conventional solid-core (SC) fiber to a hollow-core photonic crystal fiber (HCPCF) and vice versa. We report the observed coupling efficiencies for an assortment of solid-core fibers and a HCPCF with maximum efficiency between solid-core fiber and HCPCF of 93%.

8.
Opt Express ; 22(12): 15017-23, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24977595

RESUMO

We demonstrate a photo-induced oxidation technique for tuning GaAs photonic crystal cavities using a low-power 390 nm pulsed laser. The laser oxidizes a small (< 1 µm) diameter spot, reducing the local index of refraction and blueshifting the cavity. The tuning progress can be actively monitored in real time. We also demonstrate tuning an individual cavity within a pair of proximity-coupled cavities, showing that this method can be used to tune individual cavities in a cavity network, with applications in quantum simulations and quantum computing.

9.
Phys Rev Lett ; 111(2): 027402, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23889441

RESUMO

We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spin initialization and manipulation achievable in bulk semiconductors. Moreover, the presence of the cavity speeds up the spin initialization process beyond the GHz range.

10.
Phys Rev Lett ; 108(18): 183601, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22681074

RESUMO

We propose an implementation of a source of strongly sub-poissonian light in a system consisting of a quantum dot coupled to both modes of a lossy bimodal optical cavity. When one mode of the cavity is resonantly driven with coherent light, the system will act as an efficient single photon filter, and the transmitted light will have a strongly sub-poissonian character. In addition to numerical simulations demonstrating this effect, we present a physical explanation of the underlying mechanism. In particular, we show that the effect results from an interference between the coherent light transmitted through the resonant cavity and the super-poissonian light generated by photon-induced tunneling. Peculiarly, this effect vanishes in the absence of the cavity loss.

11.
Phys Rev Lett ; 108(9): 093604, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22463636

RESUMO

We study dynamics of the interaction between two weak light beams mediated by a strongly coupled quantum dot-photonic crystal cavity system. First, we perform all-optical switching of a weak continuous-wave signal with a pulsed control beam, and then perform switching between two weak pulsed beams (40 ps pulses). Our results show that the quantum dot-nanocavity system enables fast, controllable optical switching at the single-photon level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...