Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Biosens Bioelectron ; 262: 116513, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38941688

RESUMO

Lab-on-Chip electrochemical sensors, such as Ion-Sensitive Field-Effect Transistors (ISFETs), are being developed for use in point-of-care diagnostics, such as pH detection of tumour microenvironments, due to their integration with standard Complementary Metal Oxide Semiconductor (CMOS) technology. With this approach, the passivation of the CMOS process is used as a sensing layer to minimise post-processing, and Silicon Nitride (Si3N4) is the most common material at the microchip surface. ISFETs have the potential to be used for cell-based assays however, there is a poor understanding of the biocompatibility of microchip surfaces. Here, we quantitatively evaluated cell adhesion, morphogenesis, proliferation and mechano-responsiveness of both normal and cancer cells cultured on a Si3N4, sensor surface. We demonstrate that both normal and cancer cell adhesion decreased on Si3N4. Activation of the mechano-responsive transcription regulators, YAP/TAZ, are significantly decreased in cancer cells on Si3N4 in comparison to standard cell culture plastic, whilst proliferation marker, Ki67, expression markedly increased. Non-tumorigenic cells on chip showed less sensitivity to culture on Si3N4 than cancer cells. Treatment with extracellular matrix components increased cell adhesion in normal and cancer cell cultures, surpassing the adhesiveness of plastic alone. Moreover, poly-l-ornithine and laminin treatment restored YAP/TAZ levels in both non-tumorigenic and cancer cells to levels comparable to those observed on plastic. Thus, engineering the electrochemical sensor surface with treatments will provide a more physiologically relevant environment for future cell-based assay development on chip.

2.
Sci Rep ; 14(1): 14793, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926422

RESUMO

During metastatic dissemination, circulating tumour cells (CTCs) enter capillary beds, where they experience mechanical constriction forces. The transient and persistent effects of these forces on CTCs behaviour remain poorly understood. Here, we developed a high-throughput microfluidic platform mimicking human capillaries to investigate the impact of mechanical constriction forces on malignant and normal breast cell lines. We observed that capillary constrictions induced nuclear envelope rupture in both cancer and normal cells, leading to transient changes in nuclear and cytoplasmic area. Constriction forces transiently activated cGAS/STING and pathways involved in inflammation (NF-κB, STAT and IRF3), especially in the non-malignant cell line. Furthermore, the non-malignant cell line experienced transcriptional changes, particularly downregulation of epithelial markers, while the metastatic cell lines showed minimal alterations. These findings suggest that mechanical constriction forces within capillaries may promote differential effects in malignant and normal cell lines.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Linhagem Celular Tumoral , Capilares/patologia , Núcleo Celular/metabolismo , Metástase Neoplásica , Membrana Nuclear/metabolismo
3.
Cell Rep ; 43(6): 114243, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38805398

RESUMO

Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5',8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.


Assuntos
Células-Tronco Pluripotentes Induzidas , Xeroderma Pigmentoso , Xeroderma Pigmentoso/patologia , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Complexo de Endopeptidases do Proteassoma/metabolismo , Diferenciação Celular , Dano ao DNA , Modelos Biológicos , Multiômica
4.
Cell Rep ; 43(5): 114016, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38636520

RESUMO

How cancer cells determine their shape in response to three-dimensional (3D) geometric and mechanical cues is unclear. We develop an approach to quantify the 3D cell shape of over 60,000 melanoma cells in collagen hydrogels using high-throughput stage-scanning oblique plane microscopy (ssOPM). We identify stereotypic and environmentally dependent changes in shape and protrusivity depending on whether a cell is proximal to a flat and rigid surface or is embedded in a soft environment. Environmental sensitivity metrics calculated for small molecules and gene knockdowns identify interactions between the environment and cellular factors that are important for morphogenesis. We show that the Rho guanine nucleotide exchange factor (RhoGEF) TIAM2 contributes to shape determination in environmentally independent ways but that non-muscle myosin II, microtubules, and the RhoGEF FARP1 regulate shape in ways dependent on the microenvironment. Thus, changes in cancer cell shape in response to 3D geometric and mechanical cues are modulated in both an environmentally dependent and independent fashion.


Assuntos
Forma Celular , Fatores de Troca do Nucleotídeo Guanina , Humanos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Linhagem Celular Tumoral , Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Melanoma/patologia , Melanoma/metabolismo
5.
Nucleic Acids Res ; 51(12): 6337-6354, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224534

RESUMO

Accurate genome replication is essential for all life and a key mechanism of disease prevention, underpinned by the ability of cells to respond to replicative stress (RS) and protect replication forks. These responses rely on the formation of Replication Protein A (RPA)-single stranded (ss) DNA complexes, yet this process remains largely uncharacterized. Here, we establish that actin nucleation-promoting factors (NPFs) associate with replication forks, promote efficient DNA replication and facilitate association of RPA with ssDNA at sites of RS. Accordingly, their loss leads to deprotection of ssDNA at perturbed forks, impaired ATR activation, global replication defects and fork collapse. Supplying an excess of RPA restores RPA foci formation and fork protection, suggesting a chaperoning role for actin nucleators (ANs) (i.e. Arp2/3, DIAPH1) and NPFs (i.e, WASp, N-WASp) in regulating RPA availability upon RS. We also discover that ß-actin interacts with RPA directly in vitro, and in vivo a hyper-depolymerizing ß-actin mutant displays a heightened association with RPA and the same dysfunctional replication phenotypes as loss of ANs/NPFs, which contrasts with the phenotype of a hyper-polymerizing ß-actin mutant. Thus, we identify components of actin polymerization pathways that are essential for preventing ectopic nucleolytic degradation of perturbed forks by modulating RPA activity.


Assuntos
Actinas , Replicação do DNA , Actinas/genética , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , DNA de Cadeia Simples/genética , Chaperonas Moleculares/genética
6.
bioRxiv ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36711944

RESUMO

Accurate genome replication is essential for all life and a key mechanism of disease prevention, underpinned by the ability of cells to respond to replicative stress (RS) and protect replication forks. These responses rely on the formation of Replication Protein A (RPA)-single stranded (ss) DNA complexes, yet this process remains largely uncharacterized. Here we establish that actin nucleation-promoting factors (NPFs) associate with replication forks, promote efficient DNA replication and facilitate association of RPA with ssDNA at sites of RS. Accordingly, their loss leads to deprotection of ssDNA at perturbed forks, impaired ATR activation, global replication defects and fork collapse. Supplying an excess of RPA restores RPA foci formation and fork protection, suggesting a chaperoning role for actin nucleators (ANs) (i.e., Arp2/3, DIAPH1) and NPFs (i.e, WASp, N-WASp) in regulating RPA availability upon RS. We also discover that ß-actin interacts with RPA directly in vitro , and in vivo a hyper-depolymerizing ß-actin mutant displays a heightened association with RPA and the same dysfunctional replication phenotypes as loss of ANs/NPFs, which contrasts with the phenotype of a hyper-polymerizing ß-actin mutant. Thus, we identify components of actin polymerization pathways that are essential for preventing ectopic nucleolytic degradation of perturbed forks by modulating RPA activity.

7.
Sci Adv ; 9(4): eadd0636, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696495

RESUMO

Almost all living cells maintain size uniformity through successive divisions. Proteins that over and underscale with size can act as rheostats, which regulate cell cycle progression. Using a multiomic strategy, we leveraged the heterogeneity of melanoma cell lines to identify peptides, transcripts, and phosphorylation events that differentially scale with cell size. Subscaling proteins are enriched in regulators of the DNA damage response and cell cycle progression, whereas super-scaling proteins included regulators of the cytoskeleton, extracellular matrix, and inflammatory response. Mathematical modeling suggested that decoupling growth and proliferative signaling may facilitate cell cycle entry over senescence in large cells when mitogenic signaling is decreased. Regression analysis reveals that up-regulation of TP53 or CDKN1A/p21CIP1 is characteristic of proliferative cancer cells with senescent-like sizes/proteomes. This study provides one of the first demonstrations of size-scaling phenomena in cancer and how morphology influences the chemistry of the cell.


Assuntos
Melanoma , Proteoma , Humanos , Melanoma/genética , Melanoma/metabolismo , Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Senescência Celular/genética
8.
STAR Protoc ; 4(1): 101942, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36525347

RESUMO

Small interfering RNA (siRNA) screening approaches used with quantitative single-cell analysis can uncover the roles of genes in cell morphogenesis. Here, we present a high-throughput automated phenotypic screening technique to quantify a single cell shape in cancer cells cultured on top of soft 3D hydrogels. We describe reverse transfection of cells with siRNAs and seeding of these cells on top of collagen, followed by image analysis to quantify morphology of a single cell and population levels in low-elasticity matrices. For complete details on the use and execution of this protocol, please refer to Bousgouni et al. (2022).1.


Assuntos
Hidrogéis , Neoplasias , Ensaios de Triagem em Larga Escala/métodos , RNA Interferente Pequeno/genética , Diagnóstico por Imagem , Fenótipo , Neoplasias/genética
9.
Commun Biol ; 5(1): 1178, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369329

RESUMO

Cancer cells feature a resting membrane potential (Vm) that is depolarized compared to normal cells, and express active ionic conductances, which factor directly in their pathophysiological behavior. Despite similarities to 'excitable' tissues, relatively little is known about cancer cell Vm dynamics. Here high-throughput, cellular-resolution Vm imaging reveals that Vm fluctuates dynamically in several breast cancer cell lines compared to non-cancerous MCF-10A cells. We characterize Vm fluctuations of hundreds of human triple-negative breast cancer MDA-MB-231 cells. By quantifying their Dynamic Electrical Signatures (DESs) through an unsupervised machine-learning protocol, we identify four classes ranging from "noisy" to "blinking/waving". The Vm of MDA-MB-231 cells exhibits spontaneous, transient hyperpolarizations inhibited by the voltage-gated sodium channel blocker tetrodotoxin, and by calcium-activated potassium channel inhibitors apamin and iberiotoxin. The Vm of MCF-10A cells is comparatively static, but fluctuations increase following treatment with transforming growth factor-ß1, a canonical inducer of the epithelial-to-mesenchymal transition. These data suggest that the ability to generate Vm fluctuations may be a property of hybrid epithelial-mesenchymal cells or those originated from luminal progenitors.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Células MCF-7 , Potenciais da Membrana
10.
iScience ; 25(8): 104795, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36039362

RESUMO

Rho GTP Exchange Factors (RhoGEFs) and Rho GTPase Activating Proteins (RhoGAPs) are large families of molecules that regulate shape determination in all eukaryotes. In pathologies such as melanoma, RhoGEF and RhoGAP activity underpins the ability of cells to invade tissues of varying elasticity. To identify RhoGEFs and RhoGAPs that regulate melanoma cell shape on soft and/or stiff materials, we performed genetic screens, in tandem with single-cell quantitative morphological analysis. We show that ARHGEF9/Collybistin (Cb) is essential for cell shape determination on both soft and stiff materials, and in cells embedded in 3D soft hydrogel. ARHGEF9 is required for melanoma cells to invade 3D matrices. Depletion of ARHGEF9 results in loss of tension at focal adhesions decreased cell-wide contractility, and the inability to stabilize protrusions. Taken together we show that ARHGEF9 promotes the formation of actin-rich filopodia, which serves to establish and stabilize adhesions and determine melanoma cell shape.

11.
Sci Data ; 9(1): 395, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817775

RESUMO

When used in combination with hormone treatment, Palbociclib prolongs progression-free survival of patients with hormone receptor positive breast cancer. Mechanistically, Palbociclib inhibits CDK4/6 activity but the basis for differing sensitivity of cancer to Palbociclib is poorly understood. A common observation in a subset of Triple Negative Breast Cancers (TNBCs) is that prolonged CDK4/6 inhibition can engage a senescence-like state where cells exit the cell cycle, whilst, remaining metabolically active. To better understand the senescence-like cell state which arises after Palbociclib treatment we used mass spectrometry to quantify the proteome, phosphoproteome, and secretome of Palbociclib-treated MDA-MB-231 TNBC cells. We observed altered levels of cell cycle regulators, immune response, and key senescence markers upon Palbociclib treatment. These datasets provide a starting point for the derivation of biomarkers which could inform the future use CDK4/6 inhibitors in TNBC subtypes and guide the development of potential combination therapies.


Assuntos
Neoplasias de Mama Triplo Negativas , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Humanos , Proteoma , Proteômica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
12.
Genome Res ; 32(4): 750-765, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35197309

RESUMO

The morphology of breast cancer cells is often used as an indicator of tumor severity and prognosis. Additionally, morphology can be used to identify more fine-grained, molecular developments within a cancer cell, such as transcriptomic changes and signaling pathway activity. Delineating the interface between morphology and signaling is important to understand the mechanical cues that a cell processes in order to undergo epithelial-to-mesenchymal transition and consequently metastasize. However, the exact regulatory systems that define these changes remain poorly characterized. In this study, we used a network-systems approach to integrate imaging data and RNA-seq expression data. Our workflow allowed the discovery of unbiased and context-specific gene expression signatures and cell signaling subnetworks relevant to the regulation of cell shape, rather than focusing on the identification of previously known, but not always representative, pathways. By constructing a cell-shape signaling network from shape-correlated gene expression modules and their upstream regulators, we found central roles for developmental pathways such as WNT and Notch, as well as evidence for the fine control of NF-kB signaling by numerous kinase and transcriptional regulators. Further analysis of our network implicates a gene expression module enriched in the RAP1 signaling pathway as a mediator between the sensing of mechanical stimuli and regulation of NF-kB activity, with specific relevance to cell shape in breast cancer.


Assuntos
Neoplasias da Mama , NF-kappa B , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Forma Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fenótipo , Transcriptoma
13.
J Microsc ; 288(2): 130-141, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34089183

RESUMO

We presenta robust, long-range optical autofocus system for microscopy utilizing machine learning. This can be useful for experiments with long image data acquisition times that may be impacted by defocusing resulting from drift of components, for example due to changes in temperature or mechanical drift. It is also useful for automated slide scanning or multiwell plate imaging where the sample(s) to be imaged may not be in the same horizontal plane throughout the image data acquisition. To address the impact of (thermal or mechanical) fluctuations over time in the optical autofocus system itself, we utilize a convolutional neural network (CNN) that is trained over multiple days to account for such fluctuations. To address the trade-off between axial precision and range of the autofocus, we implement orthogonal optical readouts with separate CNN training data, thereby achieving an accuracy well within the 600 nm depth of field of our 1.3 numerical aperture objective lens over a defocus range of up to approximately +/-100 µm. We characterize the performance of this autofocus system and demonstrate its application to automated multiwell plate single molecule localization microscopy.


Many microscopy experiments involve extended imaging of samples over timescales from minutes to days, during which the microscope can 'drift' out of focus. When imaging at high magnification, the depth of field is of the order of one micron and so the imaging system should keep the sample in the focal plane of the microscope objective lens to this precision. Unfortunately, temperature changes in the laboratory can cause thermal expansion of microscope components that can move the focal plane by more than a micron and such changes can occur on a timescale of minutes. This is a particular issue for super-resolved microscopy experiments using single molecule localization microscopy (SMLM) techniques, for which 1000s of images are acquired, and for automated imaging of multiple samples in multiwell plates. It is possible to maintain the sample in the focal plane focus position by either automatically moving the sample or adjusting the imaging system, for example by moving the objective lens. This is called 'autofocus' and is frequently achieved by reflecting a light beam from the microscope coverslip and measuring its position of beam profile as a function of defocus of the microscope. The correcting adjustment is then usually calculated analytically but there is recent interest in using machine learning techniques to determine the required focussing adjustment. Here, we present a system that uses a neural network to determine the required defocus correcting adjustment from camera images of a laser beam that is reflected from the coverslip. Unfortunately, this approach will only work when the microscope is in the same condition as it was when the neural network was trained - and this can be compromised by the same drift of the optical system that causes the defocus needing to be corrected. We show, however, that by training a neural network over an extended period, for example 10 days, this approach can 'learn' about the optical system drifts and provide the required autofocus function. We also show that an optical system utilizing a rectangular slit can make two measurements of the defocus simultaneously, with one measurement being optimized for high accuracy over a limited range (±10 µm) near focus and the other providing lower accuracy but over a much longer range (±100 µm). This robust autofocus system is suitable for automated super-resolved microscopy of arrays of samples in a multiwell plate using SMLM, for which an experiment routinely lasts more than 5 h.


Assuntos
Aprendizado Profundo , Microscopia , Microscopia/métodos , Imagem Individual de Molécula , Aprendizado de Máquina
14.
Sci Rep ; 11(1): 14698, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282197

RESUMO

In contrast to hypertrophic cardiomyopathy, there has been reported no specific pattern of cardiomyocyte array in dilated cardiomyopathy (DCM), partially because lack of alignment assessment in a three-dimensional (3D) manner. Here we have established a novel method to evaluate cardiomyocyte alignment in 3D using intravital heart imaging and demonstrated homogeneous alignment in DCM mice. Whilst cardiomyocytes of control mice changed their alignment by every layer in 3D and position twistedly even in a single layer, termed myocyte twist, cardiomyocytes of DCM mice aligned homogeneously both in two-dimensional (2D) and in 3D and lost myocyte twist. Manipulation of cultured cardiomyocyte toward homogeneously aligned increased their contractility, suggesting that homogeneous alignment in DCM mice is due to a sort of alignment remodelling as a way to compensate cardiac dysfunction. Our findings provide the first intravital evidence of cardiomyocyte alignment and will bring new insights into understanding the mechanism of heart failure.


Assuntos
Cardiomiopatia Dilatada/diagnóstico por imagem , Movimento Celular/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Animais Recém-Nascidos , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/patologia , Células Cultivadas , Diagnóstico por Imagem/métodos , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Ratos , Ratos Wistar
15.
Clin Exp Metastasis ; 38(4): 337-342, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34241735

RESUMO

The behaviour of circulating tumour cells in the microcirculation remains poorly understood. Growing evidence suggests that biomechanical adaptations and interactions with blood components, i.e. immune cells and platelets within capillary beds, may add more complexity to CTCs journey towards metastasis. Revisiting how these mediators impact the ability of circulating tumour cells to survive and metastasise, will be vital to understand the role of microcirculation and advance our knowledge on metastasis.


Assuntos
Microcirculação , Metástase Neoplásica/prevenção & controle , Células Neoplásicas Circulantes/patologia , Fenômenos Biomecânicos , Humanos , Metástase Neoplásica/patologia , Neutrófilos/patologia
16.
Br J Cancer ; 124(1): 58-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257836

RESUMO

During metastasis, tumour cells navigating the vascular circulatory system-circulating tumour cells (CTCs)-encounter capillary beds, where they start the process of extravasation. Biomechanical constriction forces exerted by the microcirculation compromise the survival of tumour cells within capillaries, but a proportion of CTCs manage to successfully extravasate and colonise distant sites. Despite the profound importance of this step in the progression of metastatic cancers, the factors about this deadly minority of cells remain elusive. Growing evidence suggests that mechanical forces exerted by the capillaries might induce adaptive mechanisms in CTCs, enhancing their survival and metastatic potency. Advances in microfluidics have enabled a better understanding of the cell-survival capabilities adopted in capillary-mimicking constrictions. In this review, we will highlight adaptations developed by CTCs to endure mechanical constraints in the microvasculature and outline how these mechanical forces might trigger dynamic changes towards a more invasive phenotype. A better understanding of the dynamic mechanisms adopted by CTCs within the microcirculation that ultimately lead to metastasis could open up novel therapeutic avenues.


Assuntos
Invasividade Neoplásica/patologia , Células Neoplásicas Circulantes/patologia , Animais , Humanos , Microcirculação/fisiologia , Microfluídica
17.
PLoS Biol ; 18(12): e3000986, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33378358

RESUMO

Clustering of the enteropathogenic Escherichia coli (EPEC) type III secretion system (T3SS) effector translocated intimin receptor (Tir) by intimin leads to actin polymerisation and pyroptotic cell death in macrophages. The effect of Tir clustering on the viability of EPEC-infected intestinal epithelial cells (IECs) is unknown. We show that EPEC induces pyroptosis in IECs in a Tir-dependent but actin polymerisation-independent manner, which was enhanced by priming with interferon gamma (IFNγ). Mechanistically, Tir clustering triggers rapid Ca2+ influx, which induces lipopolysaccharide (LPS) internalisation, followed by activation of caspase-4 and pyroptosis. Knockdown of caspase-4 or gasdermin D (GSDMD), translocation of NleF, which blocks caspase-4 or chelation of extracellular Ca2+, inhibited EPEC-induced cell death. IEC lines with low endogenous abundance of GSDMD were resistant to Tir-induced cell death. Conversely, ATP-induced extracellular Ca2+ influx enhanced cell death, which confirmed the key regulatory role of Ca2+ in EPEC-induced pyroptosis. We reveal a novel mechanism through which infection with an extracellular pathogen leads to pyroptosis in IECs.


Assuntos
Cálcio/metabolismo , Proteínas de Escherichia coli/metabolismo , Piroptose/fisiologia , Receptores de Superfície Celular/metabolismo , Actinas/metabolismo , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/fisiologia , Análise por Conglomerados , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Células Epiteliais/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Células HeLa , Humanos , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Transporte Proteico , Receptores de Superfície Celular/fisiologia , Transdução de Sinais/fisiologia , Sistemas de Secreção Tipo III/metabolismo
18.
EMBO J ; 39(11): e104419, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32350921

RESUMO

Two mitotic cyclin types, cyclin A and B, exist in higher eukaryotes, but their specialised functions in mitosis are incompletely understood. Using degron tags for rapid inducible protein removal, we analyse how acute depletion of these proteins affects mitosis. Loss of cyclin A in G2-phase prevents mitotic entry. Cells lacking cyclin B can enter mitosis and phosphorylate most mitotic proteins, because of parallel PP2A:B55 phosphatase inactivation by Greatwall kinase. The final barrier to mitotic establishment corresponds to nuclear envelope breakdown, which requires a decisive shift in the balance of cyclin-dependent kinase Cdk1 and PP2A:B55 activity. Beyond this point, cyclin B/Cdk1 is essential for phosphorylation of a distinct subset of mitotic Cdk1 substrates that are essential to complete cell division. Our results identify how cyclin A, cyclin B and Greatwall kinase coordinate mitotic progression by increasing levels of Cdk1-dependent substrate phosphorylation.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina A/metabolismo , Ciclina B/metabolismo , Mitose , Proteína Fosfatase 2/metabolismo , Proteína Quinase CDC2/genética , Linhagem Celular , Ciclina A/genética , Ciclina B/genética , Humanos , Proteína Fosfatase 2/genética
19.
Nat Commun ; 11(1): 1851, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296040

RESUMO

Genome stability relies on proper coordination of mitosis and cytokinesis, where dynamic microtubules capture and faithfully segregate chromosomes into daughter cells. With a high-content RNAi imaging screen targeting more than 2,000 human lncRNAs, we identify numerous lncRNAs involved in key steps of cell division such as chromosome segregation, mitotic duration and cytokinesis. Here, we provide evidence that the chromatin-associated lncRNA, linc00899, leads to robust mitotic delay upon its depletion in multiple cell types. We perform transcriptome analysis of linc00899-depleted cells and identify the neuronal microtubule-binding protein, TPPP/p25, as a target of linc00899. We further show that linc00899 binds TPPP/p25 and suppresses its transcription. In cells depleted of linc00899, upregulation of TPPP/p25 alters microtubule dynamics and delays mitosis. Overall, our comprehensive screen uncovers several lncRNAs involved in genome stability and reveals a lncRNA that controls microtubule behaviour with functional implications beyond cell division.


Assuntos
Divisão Celular/genética , Divisão Celular/fisiologia , RNA Longo não Codificante/genética , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Mitose/genética , Mitose/fisiologia , Proteínas/genética , Interferência de RNA/fisiologia
20.
Nat Cell Biol ; 22(4): 498-511, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203420

RESUMO

Rho GTPases are central regulators of the cytoskeleton and, in humans, are controlled by 145 multidomain guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs). How Rho signalling patterns are established in dynamic cell spaces to control cellular morphogenesis is unclear. Through a family-wide characterization of substrate specificities, interactomes and localization, we reveal at the systems level how RhoGEFs and RhoGAPs contextualize and spatiotemporally control Rho signalling. These proteins are widely autoinhibited to allow local regulation, form complexes to jointly coordinate their networks and provide positional information for signalling. RhoGAPs are more promiscuous than RhoGEFs to confine Rho activity gradients. Our resource enabled us to uncover a multi-RhoGEF complex downstream of G-protein-coupled receptors controlling CDC42-RHOA crosstalk. Moreover, we show that integrin adhesions spatially segregate GEFs and GAPs to shape RAC1 activity zones in response to mechanical cues. This mechanism controls the protrusion and contraction dynamics fundamental to cell motility. Our systems analysis of Rho regulators is key to revealing emergent organization principles of Rho signalling.


Assuntos
Citoesqueleto/genética , Proteínas Ativadoras de GTPase/genética , Integrinas/genética , Mecanotransdução Celular/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteínas rac1 de Ligação ao GTP/genética , Animais , Células COS , Adesão Celular , Linhagem Celular , Movimento Celular , Chlorocebus aethiops , Biologia Computacional , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Cães , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Proteínas Ativadoras de GTPase/classificação , Proteínas Ativadoras de GTPase/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Integrinas/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Pan troglodytes , Domínios Proteicos , Ratos , Fatores de Troca de Nucleotídeo Guanina Rho/classificação , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...