Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 203: 106-117, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35041857

RESUMO

The specific activities of gastric and pancreatic lipases were measured using triacylglycerols (TAG) from rapeseed oil, purified 1,3-sn-DAG and 1,2(2,3)-sn-DAG produced from this oil, as well as a rapeseed oil enriched with 40% w/w DAG (DAGOIL). Gastric lipase was more active on 1,3-sn-DAG than on 1,2(2,3)-sn-DAG and TAG, whereas pancreatic lipase displayed a reverse selectivity with a higher activity on TAG than on DAG taken as initial substrates. However, in both cases, the highest activities were displayed on DAGOIL. These findings show that DAG mixed with TAG, such as in the course of digestion, is a better substrate for lipases than TAG. The same rapeseed oil acylglycerols were used to investigate intestinal fat absorption in rats with mesenteric lymph duct cannulation. The levels of TAG synthesized in the intestine and total fatty acid concentration in lymph were not different when the rats were fed identical amounts of rapeseed oil TAG, 1,2(2,3)-sn-DAG, 1,3-sn-DAG or DAGOIL. Since the lipolysis of 1,3-sn-DAG by digestive lipases leads to glycerol and not 2-sn-monoacylglycerol (2-sn-MAG) like TAG lipolysis, these results suggest that the re-synthesis of TAG in the enterocytes can entirely occur through the "glycerol-3-phosphate (G3P)" pathway, with the same efficiency as the 2-sn-MAG pathway predominantly involved in the intestinal fat absorption. These findings shed new light on the role played by DAG as intermediate lipolysis products. Depending on their structure, 1,2(2,3)-sn-DAG versus 1,3-sn-DAG, DAG may control the pathway (2-sn-MAG or G3P) by which TAG are re-synthesized in the enterocytes.


Assuntos
Diglicerídeos , Enterócitos , Ratos , Animais , Diglicerídeos/metabolismo , Enterócitos/metabolismo , Lipase/metabolismo , Óleo de Brassica napus/metabolismo , Glicerol/metabolismo , Triglicerídeos/metabolismo , Digestão , Redes e Vias Metabólicas
2.
FASEB J ; 33(10): 10986-10995, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31284753

RESUMO

Phosphatidylethanolamine (PE) N-methyltransferase (PEMT) accounts for ∼30% of hepatic phosphatidylcholine (PC) biosynthesis. Pemt-/- mice fed a high-fat diet are protected against diet-induced obesity (DIO) and insulin resistance (IR) but develop nonalcoholic fatty liver disease (NAFLD) associated with a decreased PC:PE ratio. We investigated whether the lack of hepatic PEMT or the lack of PEMT in other tissues (where it is expressed at low levels) is responsible for or contributes to the protection against DIO and IR in Pemt-/- mice. Furthermore, we investigated whether decreasing PEMT expression with antisense oligonucleotides (ASOs) would result in metabolic benefits in both lean and obese mice without negatively impacting liver health. We both restored hepatic PEMT in Pemt-/- mice via adeno-associated virus delivery and decreased hepatic PEMT with ASOs in wild-type and ob/ob mice. Weight gain, insulin sensitivity, and indices of liver function were determined. We report that the protection against DIO and IR and the development of NAFLD is dependent on hepatic PEMT activity. NAFLD, associated with a significant decrease in the hepatic PC:PE ratio, was exacerbated by PEMT deficiency in obese mice, suggesting that phospholipid insufficiency promotes NAFLD progression during obesity or overnutrition. Hepatic PEMT is critical for maintaining phospholipid balance, which is crucial for a healthy liver.-Wan, S., van der Veen, J. N., Bakala N'Goma, J.-C., Nelson, R. C., Vance, D. E., Jacobs, R. L. Hepatic PEMT activity mediates liver health, weight gain, and insulin resistance.


Assuntos
Resistência à Insulina/fisiologia , Fígado/metabolismo , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Animais , Dieta Hiperlipídica , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Fosfatidiletanolamina N-Metiltransferase/genética , Fosfatidiletanolaminas/metabolismo
3.
Chem Phys Lipids ; 211: 52-65, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28235448

RESUMO

Guinea pig pancreatic lipase-related protein 2 (GPLRP2) is an interesting model enzyme that can hydrolyze a large set of acylglycerols in vitro but displays however some selectivity depending on the supramolecular structure of substrate and the presence of surfactants like bile salts. We showed that GPLRP2 hydrolyzes 1,2-dipalmitoyl phosphatidylcholine (DPPC) present in mixed micelles with sodium taurodeoxycholate (NaTDC) but not in multilamellar (MLV) and large unilamellar (LUV) vesicles of DPPC. After characterization of these lipid aggregates by dynamic light scattering (DLS), the discriminative recognition of DPPC in DPPC/NaTDC micelles versus MLV and LUV by an inactive variant (S152G) of GPLRP2 to avoid the effect of substrate hydrolysis was investigated using Fourier transform infrared spectroscopy (FTIR). IR spectra were recorded after hydrogen/deuterium exchange, at pD 6 and various temperatures to study phase transitions. We analyzed the methylene asymmetric stretching (ν(CH2)as), the carbonyl stretching (ν(CO)) and the composite polar head-group vibration bands, first to characterized differences in DPPC micelles and vesicles, and second to estimate the degree of interaction of GPLRP2 S152G with phospholipid. Our results indicate that a significant interaction between GPLRP2 S152G and DPPC is only observed when NaTDC is added to the system to form micelles and this can be explained by the different organization of DPPC in mixed micelles compared to lamellar vesicles (higher hydration of polar head, higher mobility of alkyl chains) that favors GPLRP2 penetration into the phospholipid layer.


Assuntos
Lipase/análise , Lipase/química , Micelas , Pâncreas/enzimologia , Fosfolipídeos/análise , Fosfolipídeos/química , Animais , Cobaias , Hidrólise , Lipase/metabolismo , Lipólise , Lipossomos/química , Lipossomos/metabolismo , Fosfolipídeos/metabolismo , Espectrofotometria Infravermelho
4.
Pharm Res ; 32(4): 1279-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25288015

RESUMO

PURPOSE: Lipid-based formulations (LBF) are substrates for digestive lipases and digestion can significantly alter their properties and potential to support drug absorption. LBFs have been widely examined for their behaviour in the presence of pancreatic enzymes. Here, the impact of gastric lipase on the digestion of representative formulations from the Lipid Formulation Classification System has been investigated. METHODS: The pHstat technique was used to measure the lipolysis by recombinant dog gastric lipase (rDGL) of eight LBFs containing either medium (MC) or long (LC) chain triglycerides and a range of surfactants, at various pH values [1.5 to 7] representative of gastric and small intestine contents under both fasting and fed conditions. RESULTS: All LBFs were hydrolyzed by rDGL. The highest specific activities were measured at pH 4 with the type II and IIIA MC formulations that contained Tween®85 or Cremophor EL respectively. The maximum activity on LC formulations was recorded at pH 5 for the type IIIA-LC formulation. Direct measurement of LBF lipolysis using the pHstat, however, was limited by poor LC fatty acid ionization at low pH. CONCLUSIONS: Since gastric lipase initiates lipid digestion in the stomach, remains active in the intestine and acts on all representative LBFs, its implementation in future standardized in vitro assays may be beneficial. At this stage, however, routine use remains technically challenging.


Assuntos
Química Farmacêutica , Lipase/metabolismo , Lipólise , Preparações Farmacêuticas/metabolismo , Estômago/enzimologia , Triglicerídeos/metabolismo , Animais , Química Farmacêutica/métodos , Química Farmacêutica/normas , Digestão , Cães , Concentração de Íons de Hidrogênio , Hidrólise , Lipase/química , Pancreatina/química , Pancreatina/metabolismo , Preparações Farmacêuticas/química , Proteínas Recombinantes , Triglicerídeos/química
5.
Infect Immun ; 83(2): 780-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25486995

RESUMO

Mycobacterium abscessus is a pathogenic, rapidly growing mycobacterium involved in pulmonary and cutaneo-mucous infections worldwide, to which cystic fibrosis patients are exquisitely susceptible. The analysis of the genome sequence of M. abscessus showed that this bacterium is endowed with the metabolic pathways typically found in environmental microorganisms that come into contact with soil, plants, and aquatic environments, where free-living amoebae are frequently present. M. abscessus also contains several genes that are characteristically found only in pathogenic bacteria. One of them is MAB_0555, encoding a putative phospholipase C (PLC) that is absent from most other rapidly growing mycobacteria, including Mycobacterium chelonae and Mycobacterium smegmatis. Here, we report that purified recombinant M. abscessus PLC is highly cytotoxic to mouse macrophages, presumably due to hydrolysis of membrane phospholipids. We further showed by constructing and using an M. abscessus PLC knockout mutant that loss of PLC activity is deleterious to M. abscessus intracellular survival in amoebae. The importance of PLC is further supported by the fact that M. abscessus PLC was found to be expressed only in amoebae. Aerosol challenge of mice with M. abscessus strains that were precultured in amoebae enhanced M. abscessus lung infectivity relative to M. abscessus grown in broth culture. Our study underlines the importance of PLC for the virulence of M. abscessus. Despite the difficulties of isolating M. abscessus from environmental sources, our findings suggest that M. abscessus has evolved in close contact with environmental protozoa, which supports the argument that amoebae may contribute to the virulence of opportunistic mycobacteria.


Assuntos
Amoeba/fisiologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium/patogenicidade , Fosfolipases Tipo C/fisiologia , Amoeba/microbiologia , Animais , Sequência de Bases , Células Cultivadas , Técnicas de Cocultura , Fibrose Cística/microbiologia , Técnicas de Inativação de Genes , Genoma Bacteriano/genética , Macrófagos/imunologia , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium/enzimologia , Mycobacterium/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Proteínas Recombinantes , Análise de Sequência de DNA , Fosfolipases Tipo C/genética , Fatores de Virulência/genética
6.
AAPS J ; 16(6): 1344-57, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25274609

RESUMO

The impact of pancreatin and calcium addition on a wide array of lipid-based formulations (LBFs) during in vitro lipolysis, with regard to digestion rates and distribution of the model drug danazol, was investigated. Pancreatin primarily affected the extent of digestion, leaving drug distribution somewhat unaffected. Calcium only affected the extent of digestion slightly but had a major influence on drug distribution, with more drug precipitating at higher calcium levels. This is likely to be caused by a combination of removal of lipolysis products from solution by the formation of calcium soaps and calcium precipitating with bile acids, events known to reduce the solubilizing capacity of LBFs dispersed in biorelevant media. Further, during the digestion of hydrophilic LBFs, like IIIA-LC, the un-ionized-ionized ratio of free fatty acids (FFA) remained unchanged at physiological calcium levels. This makes the titration curves at pH 6.5 representable for digestion. However, caution should be taken when interpreting lipolysis curves of lipophilic LBFs, like I-LC, at pH 6.5, at physiological levels of calcium (1.4 mM); un-ionized-ionized ratio of FFA might change during digestion, rendering the lipolysis curve at pH 6.5 non-representable for the total digestion. The ratio of un-ionized-ionized FFAs can be maintained during digestion by applying non-physiological levels of calcium, resulting in a modified drug distribution with increased drug precipitation. However, as the main objective of the in vitro digestion model is to evaluate drug distribution, which is believed to have an impact on bioavailability in vivo, a physiological level (1.4 mM) of calcium is preferred.


Assuntos
Cálcio/química , Danazol/farmacocinética , Digestão/fisiologia , Lipídeos/química , Lipólise , Pancreatina/química , Cálcio/fisiologia , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Danazol/química , Relação Dose-Resposta a Droga , Ácidos Graxos/análise , Técnicas In Vitro , Modelos Biológicos , Pancreatina/metabolismo , Solubilidade
7.
Mol Pharm ; 9(11): 3286-300, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23030411

RESUMO

The LFCS Consortium was established to develop standardized in vitro tests for lipid-based formulations (LBFs) and to examine the utility of these tests to probe the fundamental mechanisms that underlie LBF performance. In this publication, the impact of bile salt (sodium taurodeoxycholate, NaTDC) concentration and drug loading on the ability of a range of representative LBFs to generate and sustain drug solubilization and supersaturation during in vitro digestion testing has been explored and a common driver of the potential for drug precipitation identified. Danazol was used as a model poorly water-soluble drug throughout. In general, increasing NaTDC concentrations increased the digestion of the most lipophilic LBFs and promoted lipid (and drug) trafficking from poorly dispersed oil phases to the aqueous colloidal phase (AP(DIGEST)). High NaTDC concentrations showed some capacity to reduce drug precipitation, although, at NaTDC concentrations ≥3 mM, NaTDC effects on either digestion or drug solubilization were modest. In contrast, increasing drug load had a marked impact on drug solubilization. For LBFs containing long-chain lipids, drug precipitation was limited even at drug loads approaching saturation in the formulation and concentrations of solubilized drug in AP(DIGEST) increased with increased drug load. For LBFs containing medium-chain lipids, however, significant precipitation was evident, especially at higher drug loads. Across all formulations a remarkably consistent trend emerged such that the likelihood of precipitation was almost entirely dependent on the maximum supersaturation ratio (SR(M)) attained on initiation of digestion. SR(M) defines the supersaturation "pressure" in the system and is calculated from the maximum attainable concentration in the AP(DIGEST) (assuming zero precipitation), divided by the solubility of the drug in the colloidal phases formed post digestion. For LBFs where phase separation of oil phases did not occur, a threshold value for SR(M) was evident, regardless of formulation composition and drug solubilization reduced markedly above SR(M) > 2.5. The threshold SR(M) may prove to be an effective tool in discriminating between LBFs based on performance.


Assuntos
Ácidos e Sais Biliares/farmacologia , Danazol/química , Lipídeos/química , Tecnologia Farmacêutica/normas , Água/química , Química Farmacêutica , Danazol/metabolismo , Digestão , Cinética , Solubilidade/efeitos dos fármacos , Tecnologia Farmacêutica/métodos
8.
Ther Deliv ; 3(1): 105-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22833936

RESUMO

Many of the compounds present in lipid-based drug-delivery systems are esters, such as acylglycerols, phospholipids, polyethyleneglycol mono- and di-esters and polysorbate, which can be hydrolyzed by the various lipolytic enzymes present in the GI tract. Lipolysis of these compounds, along with dietary fats, affects the solubility, dispersion and bioavailibity of poorly water-soluble drugs. Pharmaceutical scientists have been taking a new interest in fat digestion in this context, and several studies presenting in vitro gastrointestinal lipolysis models have been published. In most models, it is generally assumed that pancreatic lipase is the main enzyme involved in the gastrointestinal lipolysis of lipid formulations. It was established, however, that gastric lipase, pancreatic carboxyl ester hydrolaze and pancreatic lipase-related protein 2 are the major players involved in the lipolysis of lipid excipients containing acylglycerols and polyethyleneglycol esters. These findings have shown that the lipolysis of lipid excipients may actually start in the stomach and involve several lipolytic enzymes. These findings should therefore be taken into account when testing in vitro the dispersion and bioavailability of poorly water-soluble drugs formulated with lipids. In this review, we present the latest data available about the lipolytic enzymes involved in gastrointestinal lipolysis and suggest tracks for designing physiologically relevant in vitro digestion models.


Assuntos
Sistemas de Liberação de Medicamentos , Trato Gastrointestinal/metabolismo , Lipídeos/administração & dosagem , Lipólise , Digestão , Esterases/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Lipase/fisiologia , Fosfolipases A2/fisiologia
9.
J Pharm Sci ; 101(9): 3360-80, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22644939

RESUMO

The Lipid Formulation Classification System Consortium is an industry-academia collaboration, established to develop standardized in vitro methods for the assessment of lipid-based formulations (LBFs). In this first publication, baseline conditions for the conduct of digestion tests are suggested and a series of eight model LBFs are described to probe test performance across different formulation types. Digestion experiments were performed in vitro using a pH-stat apparatus and danazol employed as a model poorly water-soluble drug. LBF digestion (rate and extent) and drug solubilization patterns on digestion were examined. To evaluate cross-site reproducibility, experiments were conducted at two sites and highly consistent results were obtained. In a further refinement, bench-top centrifugation was explored as a higher throughput approach to separation of the products of digestion (and compared with ultracentrifugation), and conditions under which this method was acceptable were defined. Drug solubilization was highly dependent on LBF composition, but poorly correlated with simple performance indicators such as dispersion efficiency, confirming the utility of the digestion model as a means of formulation differentiation.


Assuntos
Danazol/química , Digestão , Portadores de Fármacos , Ensaios de Triagem em Larga Escala/normas , Lipídeos/química , Tecnologia Farmacêutica/normas , Centrifugação/normas , Química Farmacêutica/normas , Danazol/metabolismo , Danazol/normas , Guias como Assunto , Concentração de Íons de Hidrogênio , Cinética , Metabolismo dos Lipídeos , Lipídeos/normas , Variações Dependentes do Observador , Padrões de Referência , Reprodutibilidade dos Testes , Solubilidade , Tecnologia Farmacêutica/métodos
10.
FASEB J ; 24(6): 1893-903, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20103719

RESUMO

Cutinases are extracellular enzymes that are able to degrade cutin, a polyester protecting plant leaves and many kinds of lipids. Although cutinases are mainly found in phytopathogenic fungi or bacteria, 7 genes related to the cutinase family have been predicted in the genome of Mycobacterium tuberculosis. These genes may encode proteins that are involved in the complex lipid metabolism of the bacterium. Here, we report on the biochemical characterization of two secreted proteins of M. tuberculosis, Rv1984c and Rv3452, belonging to the cutinase family. Although their amino acid sequence shows 50% identity with that of the well-characterized cutinase from Fusarium solani pisi, and a high level of homology has been found to exist between these two enzymes, they show distinct substrate specificities. Rv1984c preferentially hydrolyzes medium-chain carboxylic esters and monoacylglycerols, whereas Rv3452 behaves like a phospholipase A(2), and it is able to induce macrophage lysis. The tetrahydrolipstatin inhibitor, a specific lipase inhibitor, abolishes the activity of both enzymes. Site-directed mutagenesis was performed to identify the catalytic triad of Rv1984c. Structural models for Rv1984c and Rv3452 were built, based on the crystal structure of F. solani cutinase, with a view to investigating the contribution of specific residues to the substrate specificity. Our findings open new prospects for investigating the physiological roles of cutinase-like proteins in the lipid metabolism and virulence of M. tuberculosis.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Ésteres/metabolismo , Lipólise/fisiologia , Mycobacterium tuberculosis/enzimologia , Fosfolipases A2/metabolismo , Sequência de Aminoácidos , Animais , Hidrolases de Éster Carboxílico/genética , Catálise , Inibidores Enzimáticos/farmacologia , Lactonas/farmacologia , Lipase/antagonistas & inibidores , Lipólise/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Orlistate , Fosfolipases A2/genética , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...