Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 79, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013646

RESUMO

BACKGROUND: We propose a new approach for designing personalized treatment for colorectal cancer (CRC) patients, by combining ex vivo organoid efficacy testing with mathematical modeling of the results. METHODS: The validated phenotypic approach called Therapeutically Guided Multidrug Optimization (TGMO) was used to identify four low-dose synergistic optimized drug combinations (ODC) in 3D human CRC models of cells that are either sensitive or resistant to first-line CRC chemotherapy (FOLFOXIRI). Our findings were obtained using second order linear regression and adaptive lasso. RESULTS: The activity of all ODCs was validated on patient-derived organoids (PDO) from cases with either primary or metastatic CRC. The CRC material was molecularly characterized using whole-exome sequencing and RNAseq. In PDO from patients with liver metastases (stage IV) identified as CMS4/CRIS-A, our ODCs consisting of regorafenib [1 mM], vemurafenib [11 mM], palbociclib [1 mM] and lapatinib [0.5 mM] inhibited cell viability up to 88%, which significantly outperforms FOLFOXIRI administered at clinical doses. Furthermore, we identified patient-specific TGMO-based ODCs that outperform the efficacy of the current chemotherapy standard of care, FOLFOXIRI. CONCLUSIONS: Our approach allows the optimization of patient-tailored synergistic multi-drug combinations within a clinically relevant timeframe.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Medicina de Precisão/métodos , Lapatinib , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Organoides
2.
Sci Rep ; 12(1): 5166, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338170

RESUMO

Non-coding micro RNAs (miRNAs) dysregulation seems to play an important role in the pathways involved in breast cancer occurrence and progression. In different studies, opposite functions may be assigned to the same miRNA, either promoting the disease or protecting from it. Our research tackles the following issues: (i) why aren't there any concordant findings in many research studies regarding the role of miRNAs in the progression of breast cancer? (ii) could a miRNA have either an activating effect or an inhibiting one in cancer progression according to the other miRNAs with which it interacts? For this purpose, we analyse the AHUS dataset made available on the ArrayExpress platform by Haakensen et al. The breast tissue specimens were collected over 7 years between 2003 and 2009. miRNA-expression profiling was obtained for 55 invasive carcinomas and 70 normal breast tissue samples. Our statistical analysis is based on a recently developed model and feature selection technique which, instead of selecting a single model (i.e. a unique combination of miRNAs), delivers a set of models with equivalent predictive capabilities that allows to interpret and visualize the interaction of these features. As a result, we discover a set of 112 indistinguishable models (in a predictive sense) each with 4 or 5 miRNAs. Within this set, by comparing the model coefficients, we are able to identify three classes of miRNA: (i) oncogenic miRNAs; (ii) protective miRNAs; (iii) undefined miRNAs which can play both an oncogenic and a protective role according to the network with which they interact. These results shed new light on the biological action of miRNAs in breast cancer and may contribute to explain why, in some cases, different studies attribute opposite functions to the same miRNA.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/patologia , Carcinogênese/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Oncogenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...