Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35009307

RESUMO

This article is focused on the comparison of the reliability of the results obtained by image analysis (newly proposed evaluation method) with well-known methods of evaluation of long-term corrosion resistance of glass fibers in an alkaline environment (pH > 12). The developed method is based on the analysis of scanning electron microscopy images (diameter and structures on the fiber surface). An experiment (52 weeks) was performed to evaluate two types of glass fibers: anticorrosive glass fibers (ARGFs) and E-glass fibers (EGFs). Three media were used to treat the fibers (23 ± 2 °C): H2O, Ca(OH)2, and K2SiO3. The ARGFs' tensile strength did not reduce; a decrease by 68% was observed for EGFs in H2O. Tensile strength decreased by 32% and 85-95% in K2SiO3; by 50% and 64% in Ca(OH)2 for the ARGF and EGF, respectively. Statistical analysis was performed to validate the reliability and plausibility of the developed method. ARGFs and EGFs did not show any relationship between the fiber diameter and weight in H2O; however, the linear trends may predict this relationship in Ca(OH)2 and K2SiO3. For the ARGF and EGF, the cubic trend was suitable for predicting the change in fiber weight and diameter over time in Ca(OH)2 and K2SiO3.

2.
Polymers (Basel) ; 12(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334042

RESUMO

This paper presents temperature-dependent properties and fire resistance of geopolymer foams made of ground basalt fibers, aluminum foaming agents, and potassium-activated metakaolin-based geopolymers. Temperature-dependent properties of basalt-reinforced geopolymer foams (BGFs) were investigated by a series of measurements, including apparent density, water absorption, mass loss, drying shrinkage, compressive and flexural strengths, XRD, and SEM. Results showed that the apparent density and drying shrinkage of the BGFs increase with increasing the treated temperature from 400 to 1200 °C. Below 600 °C the mass loss is enhanced while the water absorption is reduced and they both vary slightly between 600 and 1000 °C. Above 1000 °C the mass loss is decreased rapidly, whereas the water absorption is increased. The compressive and flexural strengths of the BGFs with high fiber content are improved significantly at temperatures over 600 °C and achieved the maximum at 1200 °C. The BGF with high fiber loading at 1200 °C exhibited a substantial increase in compressive strength by 108% and flexural strength by 116% compared to that at room temperature. The enhancement in the BGF strengths at high temperatures is attributed to the development of crystalline phases and structural densification. Therefore, the BGFs with high fiber loading have extraordinary mechanical stability at high temperatures. The fire resistance of wood and steel plates has been considerably improved after coating a BGF layer on their surface. The coated BGF remained its structural integrity without any considerable macroscopic damage after fire resistance test. The longest fire-resistant times for the wood and steel plates were 99 and 134 min, respectively. In general, the BGFs with excellent fire resistance have great potential for fire protection applications.

3.
Biomed Res Int ; 2018: 9856851, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519594

RESUMO

Reduced friction and wear of materials after the use of the carbon nanomaterials including nanodiamonds (NDs) have been confirmed by several studies in material engineering. Mechanical cleaning of the tooth surface by brush bristles should leave as little tissue roughened as possible. Higher surface roughness increases the tissue's wear and encourages the redeposition of the bacteria and the colouring agents present in the diet. Therefore, we evaluated the tooth tissues' surface's morphological changes after brushing them with the NDs suspension. Ten human teeth were brushed with the NDs aqueous suspension. The surfaces were observed using an Atomic Force Microscope (AFM). We found that the nature of the tissue surface became milder and smoother. A number of selected profilometric parameters were compared before and after brushing. We observed that brushing with the suspension of NDs resulted in a significant reduction in the enamel and dentine's surface roughness both in the range of the average parameters (Ra; p-0,0019) and in the detailed parameters (Rsk; p-0,048 and Rku; p-0,036). We concluded that the NDs used in the oral hygiene applications have a potentially protective effect on the enamel and the dentine's surfaces.


Assuntos
Nanodiamantes/administração & dosagem , Propriedades de Superfície/efeitos dos fármacos , Suspensões/administração & dosagem , Dente/efeitos dos fármacos , Adulto , Esmalte Dentário/efeitos dos fármacos , Feminino , Humanos , Masculino , Microscopia de Força Atômica/métodos , Escovação Dentária/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...