Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chall ; 5(7): 2000124, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34267928

RESUMO

A porous fluorocarbon sorbent is synthesized from rice husk (RH) in a microwave reactor and then evaluated for the adsorption of different gases (CH4, CO2, and N2). The fluorocarbon is characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Raman spectroscopy, Thermal gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Significant enhancement in the surface area of activated carbon material is obtained from 29 to 531 m2 g-1 after removing naturally present silica in RH. Results reveal that rice husk fluorocarbon (RHF) has a higher adsorption affinity for CO2 (1.8 mmol g-1) than that of the sulfonated rice husk (RHS) (1.4 mmol g-1) at 298 K while the corresponding separation factor of CO2/CH4 is 4 and 3; respectively. Higher separation factors of 12 and 10 are observed for the binary system of CO2/N2, respectively. Quantum chemical density functional theory (DFT) calculations agree with the experimental observations. They reveal that RHF exhibits strong columbic interactions with considerable interaction energies of -87.85, -76.75, and -55.65 kcal mol-1 with CO2, CH4, and N2 gases; respectively. Finally, the adsorption process results are highly reproducible, with a small decrease in the adsorption capacity of less than 5% after repeated trials.

2.
Sci Rep ; 10(1): 19526, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177644

RESUMO

In this present work, we successfully prepared aminated silica (ASiO2) from rice husk ash (RHA) and functionalized with 3-aminopropyltriethoxysilane (APTES). Physical and chemical properties of the synthesized material were investigated by various techniques SEM-EDX, XPS, FTIR, TGA. The surface area of RHA was 223 m2/g, while for ASiO2 was 101 m2/g. Molecular level DFT calculations revealed that the functionalization of ASiO2 resulted in a significant decrease in the HOMO-LUMO energy gap, a reduction in hardness, and a consequent increase in charge transfer characteristics. The adsorption behavior at low pressure (1 atm.) of aminated silica on different gases CO2, CH4, H2, and N2 at temperatures 77, 273, 298 K was studied. The adsorption of hydrogen was reported for the first time on aminated silica with an excellent adsorption capacity of 1.2 mmol/g. The ASiO2 exhibited excellent performance in terms of gas separation in binary mixtures of CO2/CH4, CO2/N2 and CO2/H2 at 273, and 298 K, respectively. The catalyst further exhibits high stability during three cycles with less than 10% variation in the separation capacity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...