Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1238913, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033587

RESUMO

The environmental fate of plastic particles in water bodies is influenced by microbial biofilm formation. Invertebrate grazers may be affected when foraging biofilms on plastics compared to biofilms on natural substrata but the mechanistic basis for these effects is unknown. For analyzing these effects in ecotoxicological assays stable and reproducible biofilm communities are required that are related to the environmental site of interest. Here, a defined biofilm community was established and used to perform grazing experiments with a freshwater snail. For this, snippets of different plastic materials were incubated in the photic zone of three different freshwater sites. Amplicon sequencing of biofilms formed on these snippets showed that the site of incubation and not the plastic material dominated the microbial community composition. From these biofilms, individual microbial strains as well as photoautotrophic consortia were isolated; these consortia consisted of heterotrophic bacteria that were apparently nourished by microalga. While biofilms formed by defined dual cultures of a microalga and an Alphaproteobacterium were not accepted by the snail P. fontinalis, a photoautotrophic consortium (Co_3) sustained growth and metabolism of this grazer. Amplicon sequencing revealed that consortium Co_3, which could be stably maintained on solid medium under photoautotrophic conditions, reproducibly formed biofilms of a defined composition on three different plastic materials and on glass surfaces. In conclusion, our study shows that the generation of domesticated photoautotrophic microbial communities is a valid novel approach for establishing laboratory ecotoxicological assays with higher environmental relevance than those based on defined microbiota.

2.
Water Res ; 189: 116582, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166918

RESUMO

Low-density microplastics are frequently found in sediments of many lakes and reservoirs. The processes leading to sedimentation of initially buoyant polymers are poorly understood for inland waters. This study investigated the impact of biofilm formation and aggregation on the density of buoyant polyethylene microplastics. Biofilm formation on polyethylene films (4 × 4 × 0.15 mm) was studied in a eutrophic reservoir (Bautzen, Saxony, Germany). Additionally, aggregation dynamics of small PE microplastics (~85 µm) with cyanobacteria were investigated in laboratory experiments. During summer phototrophic sessile cyanobacteria (Chamaesiphon spp. and Leptolyngbya spp.) precipitated calcite while forming biofilms on microplastics incubated in Bautzen reservoir. Subsequently the density of the biofilms led to sinking of roughly 10% of the polyethylene particles within 29 days of incubation. In the laboratory experiments planktonic cyanobacteria (Microcystis spp.) formed large and dense cell aggregates under the influence of elevated Ca2+ concentrations. These aggregates enclosed microplastic particles and led to sinking of a small portion (~0.4 %) of polyethylene microplastics. This study showed that both sessile and planktonic phototrophic microorganisms mediate processes influenced by calcium which facilitates densification and sinking of microplastics in freshwater reservoirs. Loss of buoyancy leads to particle sedimentation and could be a prerequisite for the permanent burial of microplastics within reservoir sediments.


Assuntos
Cianobactérias , Poluentes Químicos da Água , Cálcio , Monitoramento Ambiental , Alemanha , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
3.
Syst Appl Microbiol ; 42(5): 126000, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31303385

RESUMO

Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) and amplicon sequencing of the total (16S rRNA gene) and potentially active (16S rRNA transcripts), community are the major state of the art approaches for assessing the composition of bacterial communities in marine pelagic and other ecosystems. However, CARD-FISH and amplicon sequencing methods have not yet been directly compared to assess the composition of bacterioplankton communities. Therefore, these approaches were used to study the composition of bacterial communities in two North Sea seawater mesocosm experiments supplemented with diatom-derived organic matter (OM). All approaches revealed Proteobacteria and Bacteroidetes as major components of the bacterioplankton communities. The Roseobacter group and its RCA cluster, as well as Bacteroidetes and Gammaproteobacteria, responded most strongly to OM addition, whereas the SAR11 clade responded in only one of the two mesocosms. A correlation analysis showed that CARD-FISH and amplicon sequencing data of the SAR11 clade and the Roseobacter group, together with its RCA cluster, were highly significantly correlated, whereas Bacteroidetes did not yield any significant correlation and Gammaproteobacteria was only correlated with the potentially active fraction. However, subgroups of these phylogenetic groups, the SAR92 clade, the genera Pseudoalteromonas and Polaribacter, exhibited significant correlations in one of the two mesocosms. Correlations of CARD-FISH with amplicon sequencing data from the total and potentially active fractions of these lineages exhibited distinct differences. The study showed that CARD-FISH and amplicon sequencing data of distinct bacterioplankton groups and especially the phylogenetic lineages at a higher taxonomic level were correlated but reflected different aspects of their growth dynamics.


Assuntos
Bactérias/classificação , Hibridização in Situ Fluorescente , Plâncton/classificação , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Bactérias/genética , Diatomáceas/microbiologia , Mar do Norte , Filogenia , Plâncton/genética , Análise de Sequência de DNA
4.
Environ Microbiol ; 20(8): 3100-3108, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30109757

RESUMO

Bacterial biogeography and activity in the Southern Ocean are poorly understood to date. Here, we applied CARD-FISH to quantify bacterial community structure from the subtropics to Antarctica between 10°W and 10°E, covering four biogeographic provinces with distinct environmental properties. In addition, incorporation of radiolabeled glucose, amino acids and leucine via MAR-FISH served to quantify the contribution to substrate turnover by selected bacterial groups. SAR11, Bacteroidetes, Gammaproteobacteria and the Roseobacter group accounted for the majority of the bacterial community (52%-88% of DAPI-stained cells) but showed little distributional variation between provinces. In contrast, taxonomic subclades Polaribacter, NS5, NS2b (Bacteroidetes) as well as RCA (Roseobacter group) featured marked geographic variation, illustrated by NMDS and coefficients of variation. Roseobacter (specifically RCA) and Gammaproteobacteria constituted considerable fractions of cells incorporating glucose and amino acids respectively. Bacteroidetes had generally lower activities, but Polaribacter accounted for a major fraction of biomass production at one station near the Antarctic ice shelf. In conclusion, distributional patterns at finer taxonomic level and highest substrate turnover by less abundant taxa highlight the importance of taxonomic subclades in marine carbon fluxes, contributing to the understanding of functional bacterial biogeography in the Southern Ocean.


Assuntos
Bactérias/isolamento & purificação , Água do Mar/microbiologia , Aminoácidos/metabolismo , Regiões Antárticas , Bactérias/classificação , Bactérias/citologia , Bactérias/metabolismo , Biodiversidade , Glucose/metabolismo , Filogenia , Análise de Célula Única
5.
Stand Genomic Sci ; 13: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682168

RESUMO

Planktotalea frisia SH6-1T Hahnke et al. (Int J Syst Evol Microbiol 62:1619-24, 2012) is a planktonic marine bacterium isolated during a phytoplankton bloom from the southern North Sea. It belongs to the Roseobacter group within the alphaproteobacterial family Rhodobacteraceae. Here we describe the draft genome sequence and annotation of the type strain SH6-1T. The genome comprises 4,106,736 bp and contains 4128 protein-coding and 38 RNA genes. The draft genome sequence provides evidence for at least three extrachromosomal elements, encodes genes for DMSP utilization, quorum sensing, photoheterotrophy and a type IV secretion system. This indicates not only adaptation to a free-living lifestyle of P. frisia but points also to interactions with prokaryotic or eukaryotic organisms.

6.
Front Microbiol ; 8: 1771, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959250

RESUMO

Heterotrophic bacterioplankton communities play an important role in organic matter processing in the oceans worldwide. In order to investigate the significance of distinct phylogenetic bacterial groups it is not only important to assess their quantitative abundance but also their growth dynamics in relation to the entire bacterioplankton. Therefore bacterial abundance, biomass production and the composition of the entire and cell-proliferating bacterioplankton community were assessed in North Sea surface waters between the German Bight and 58°N in early summer by applying catalyzed reporter deposition (CARD-FISH) and bromodeoxyuridine fluorescence in situ hybridization (BrdU-FISH). Bacteroidetes and the Roseobacter group dominated the cell-proliferating fraction with 10-55 and 8-31% of total BrdU-positive cells, respectively. While Bacteroidetes also showed high abundances in the total bacterial fraction, roseobacters constituted only 1-9% of all cells. Despite abundances of up to 55% of total bacterial cells, the SAR11 clade constituted <6% of BrdU-positive cells. Gammaproteobacteria accounted for 2-16% of the total and 2-13% of the cell-proliferating cells. Within the two most active groups, BrdU-positive cells made up 28% of Bacteroidetes as an overall mean and 36% of roseobacters. Estimated mean growth rates of Bacteroidetes and the Roseobacter group were 1.2 and 1.5 day-1, respectively, and much higher than bulk growth rates of the bacterioplankton whereas those of the SAR11 clade and Gammaproteobacteria were 0.04 and 0.21 day-1, respectively, and much lower than bulk growth rates. Only numbers of total and cell-proliferating roseobacters but not those of Bacteroidetes and the other groups were significantly correlated to chlorophyll fluorescence and bacterioplankton biomass production. The Roseobacter group, besides Bacteroidetes, appeared to be a major player in processing phytoplankton derived organic matter despite its low partitioning in the total bacterioplankton community.

7.
ISME J ; 9(2): 371-84, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25083934

RESUMO

The RCA (Roseobacter clade affiliated) cluster, with an internal 16S rRNA gene sequence similarity of >98%, is the largest cluster of the marine Roseobacter clade and most abundant in temperate to (sub)polar oceans, constituting up to 35% of total bacterioplankton. The genome analysis of the first described species of the RCA cluster, Planktomarina temperata RCA23, revealed that this phylogenetic lineage is deeply branching within the Roseobacter clade. It shares not >65.7% of homologous genes with any other organism of this clade. The genome is the smallest of all closed genomes of the Roseobacter clade, exhibits various features of genome streamlining and encompasses genes for aerobic anoxygenic photosynthesis (AAP) and CO oxidation. In order to assess the biogeochemical significance of the RCA cluster we investigated a phytoplankton spring bloom in the North Sea. This cluster constituted 5.1% of the total, but 10-31% (mean 18.5%) of the active bacterioplankton. A metatranscriptomic analysis showed that the genome of P. temperata RCA23 was transcribed to 94% in the bloom with some variations during day and night. The genome of P. temperata RCA23 was also retrieved to 84% from metagenomic data sets from a Norwegian fjord and to 82% from stations of the Global Ocean Sampling expedition in the northwestern Atlantic. In this region, up to 6.5% of the total reads mapped on the genome of P. temperata RCA23. This abundant taxon appears to be a major player in ocean biogeochemistry.


Assuntos
Rhodobacteraceae/classificação , Rhodobacteraceae/genética , Água do Mar/microbiologia , Aclimatação , Perfilação da Expressão Gênica , Genoma Bacteriano , Metagenômica , Dados de Sequência Molecular , Mar do Norte , Oceanos e Mares , Filogenia , Fitoplâncton/genética , Fitoplâncton/isolamento & purificação , Rhodobacteraceae/isolamento & purificação , Roseobacter/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA