Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 77(10): 4393-4399, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33973695

RESUMO

BACKGROUND: Organic pest management eschews synthetic pesticides and insecticide resistance is rarely studied in organically managed systems. Spinosad is a biologically based insecticide used widely by both organic and conventional growers. Colorado potato beetle, Leptinotarsa decemlineata, is infamous for its ability to evolve resistance to insecticides. Spinosad resistance was surveyed in conventionally managed fields in eastern New York in 2006. In response to grower reports of spinosad failure on two organic farms in 2009, resistance to spinosad was assayed in both conventionally and organically managed fields the following year, and growers were surveyed for their prior spinosad use. RESULTS: In 2006, spinosad resistance measured as median lethal dose (LD50 ) varied 9.8-fold among the eight conventional fields sampled and a laboratory susceptible strain. In 2010, the resistance ratios of LD50 values relative to a laboratory susceptible strain ranged from 17.5 to 40.6 in conventionally managed fields, and from 128.7 to 5750.3 in organically managed fields, a dramatic increase from 2006 with higher resistance ratios in organically managed fields. Organic growers reported much heavier use of spinosad in the years prior to 2010. CONCLUSION: This is the first report of high-level resistance to spinosad in Coleopterans. Selection strength due to number of years used and number of applications per season appear to have been the primary factors driving the evolution of resistance to spinosad, highlighting the need for resistance management in organic production, where fewer alternative active ingredients for resistance management are available. © 2021 Society of Chemical Industry.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Combinação de Medicamentos , Resistência a Inseticidas , Inseticidas/farmacologia , Macrolídeos , Neonicotinoides , Nitrocompostos
2.
PLoS One ; 10(5): e0124915, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970705

RESUMO

Climate change can benefit individual species, but when pest species are enhanced by warmer temperatures agricultural productivity may be placed at greater risk. We analyzed the effects of temperature anomaly on arrival date and infestation severity of potato leafhopper, Empoasca fabae Harris, a classic new world long distance migrant, and a significant pest in several agricultural crops. We compiled E. fabae arrival dates and infestation severity data at different states in USA from existing literature reviews and agricultural extension records from 1951-2012, and examined the influence of temperature anomalies at each target state or overwintering range on the date of arrival and severity of infestation. Average E. fabae arrival date at different states reveal a clear trend along the south-north axis, with earliest arrival closest to the overwintering range. E. fabae arrival has advanced by 10 days over the last 62 years. E. fabae arrived earlier in warmer years in relation to each target state level temperature anomaly (3.0 days / °C increase in temperature anomaly). Increased temperature had a significant and positive effect on the severity of infestation, and arrival date had a marginal negative effect on severity. These relationships suggest that continued warming could advance the time of E. fabae colonization and increase their impact on affected crops.


Assuntos
Migração Animal/fisiologia , Hemípteros/fisiologia , Modelos Estatísticos , Solanum tuberosum/parasitologia , Animais , Clima , Mudança Climática , Hemípteros/patogenicidade , Temperatura
3.
J Econ Entomol ; 100(6): 1871-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18232405

RESUMO

Reduced fitness among resistant versus susceptible individuals slows resistance evolution and makes it easier to manage. A loss of resistance costs could indicate novel adaptations or mutations contributing to resistance. We measured costs of resistance to imidacloprid in a Massachusetts resistant population compared with a Massachusetts susceptible population in 1999 in terms of fecundity, hatching success, egg development time, and sprint speed. Resistance was additive and seemed to be polygenic with high heritability. The fecundity cost appeared overdominant in 1999, and the hatch rate cost was partly recessive in 1999, but neither was significantly different from dominant or recessive. In 2004, we repeated our measures of resistance costs in Massachusetts in terms of fecundity and hatching success, and we added a new resistant population from Maine. In 2005, we compared development time of Maine resistant and the laboratory susceptible colony eggs. Significant fecundity costs of resistance were found in both population in both 1999 and 2004, and significant egg developmental time costs were found in 1999 and 2005. However, the hatching success costs of resistance were significant in 1999 and not apparent in 2004, suggesting some modification or replacement of the resistance genes in the intervening time.


Assuntos
Besouros/efeitos dos fármacos , Imidazóis/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Nitrocompostos/farmacologia , Animais , Evolução Biológica , Neonicotinoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...