Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Reprod Toxicol ; : 108625, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857815

RESUMO

Developmental hazard evaluation is an important part of assessing chemical risks during pregnancy. Toxicological outcomes from prenatal testing in pregnant animals result from complex chemical-biological interactions, and while New Approach Methods (NAMs) based on in vitro bioactivity profiles of human cells offer promising alternatives to animal testing, most of these assays lack cellular positional information, physical constraints, and regional organization of the intact embryo. Here, we engineered a fully computable model of the embryonic disc in the CompuCell3D.org modeling environment to simulate epithelial-mesenchymal transition (EMT) of epiblast cells and self-organization of mesodermal domains (chordamesoderm, paraxial, lateral plate, posterior/extraembryonic). Mesodermal fate is modeled by synthetic activity of the BMP4-NODAL-WNT signaling axis. Cell position in the epiblast determines timing with respect to EMT for 988 computational cells in the computer model. An autonomous homeobox (Hox) clock hidden in the epiblast is driven by WNT-FGF4-CDX signaling. Executing the model renders a quantitative cell-level computation of mesodermal fate and consequences of perturbation based on known biology. For example, synthetic perturbation of the control network rendered altered phenotypes (cybermorphs) mirroring some aspects of experimental mouse embryology, with electronic knockouts, under-activation (hypermorphs) or over-activation (hypermorphs) particularly affecting the size and specification of the posterior mesoderm. This foundational model is trained on embryology but capable of performing a wide variety of toxicological tasks conversing through anatomical simulation to integrate in vitro chemical bioactivity data with known embryology. It is amenable to quantitative simulation for probabilistic prediction of early developmental toxicity.

2.
Biotechnol J ; 19(6): e2300659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863121

RESUMO

All-trans retinoic acid (atRA) is an endogenous ligand of the retinoic acid receptors, which heterodimerize with retinoid X receptors. AtRA is generated in tissues from vitamin A (retinol) metabolism to form a paracrine signal and is locally degraded by cytochrome P450 family 26 (CYP26) enzymes. The CYP26 family consists of three subtypes: A1, B1, and C1, which are differentially expressed during development. This study aims to develop and validate a high throughput screening assay to identify CYP26A1 inhibitors in a cell-free system using a luminescent P450-Glo assay technology. The assay performed well with a signal to background ratio of 25.7, a coefficient of variation of 8.9%, and a Z-factor of 0.7. To validate the assay, we tested a subset of 39 compounds that included known CYP26 inhibitors and retinoids, as well as positive and negative control compounds selected from the literature and/or the ToxCast/Tox21 portfolio. Known CYP26A1 inhibitors were confirmed, and predicted CYP26A1 inhibitors, such as chlorothalonil, prochloraz, and SSR126768, were identified, demonstrating the reliability and robustness of the assay. Given the general importance of atRA as a morphogenetic signal and the localized expression of Cyp26a1 in embryonic tissues, a validated CYP26A1 assay has important implications for evaluating the potential developmental toxicity of chemicals.


Assuntos
Ensaios de Triagem em Larga Escala , Ácido Retinoico 4 Hidroxilase , Ensaios de Triagem em Larga Escala/métodos , Ácido Retinoico 4 Hidroxilase/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Humanos , Tretinoína/farmacologia , Tretinoína/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Reprodutibilidade dos Testes
3.
ALTEX ; 40(2): 217­236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35796328

RESUMO

Evaluating chemicals for potential in vivo toxicity based on their in vitro bioactivity profile is an important step toward animal- free testing. A compendium of reference chemicals and data describing their bioactivity on specific molecular targets, cellular pathways, and biological processes is needed to bolster confidence in the predictive value of in vitro hazard detection. Endogenous signaling by all-trans retinoic acid (ATRA) is an important pathway in developmental processes and toxicities. Employing data extraction methods and advanced literature extraction tools, we assembled a set of candidate reference chemicals with demonstrated activity on ten protein family targets in the retinoid system. The compendium was culled from Protein Data Bank, ChEMBL, ToxCast/Tox21, and the biomedical literature in PubMed. Finally, we performed a case study on one chemical in our collection, citral, an inhibitor of endogenous ATRA production, to determine whether the literature supports an adverse outcome pathway explaining the compound's developmental toxicity initiated by disruption of the retinoid pathway. We also deliver an updated Abstract Sifter tool populated with these reference compounds and complex search terms designed to query the literature for the downstream consequences to support concordance with targeted retinoid pathway disruption.


Assuntos
Rotas de Resultados Adversos , Retinoides , Animais , Alternativas aos Testes com Animais , Técnicas In Vitro
4.
Front Pharmacol ; 13: 971296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172177

RESUMO

All-trans retinoic acid (ATRA) gradients determine skeletal patterning morphogenesis and can be disrupted by diverse genetic or environmental factors during pregnancy, leading to fetal skeleton defects. Adverse Outcome Pathway (AOP) frameworks for ATRA metabolism, signaling, and homeostasis allow for the development of new approach methods (NAMs) for predictive toxicology with less reliance on animal testing. Here, a data-driven model was constructed to identify chemicals associated with both ATRA pathway bioactivity and prenatal skeletal defects. The phenotype data was culled from ToxRefDB prenatal developmental toxicity studies and produced a list of 363 ToxRefDB chemicals with altered skeletal observations. Defects were classified regionally as cranial, post-cranial axial, appendicular, and other (unspecified) features based on ToxRefDB descriptors. To build a multivariate statistical model, high-throughput screening bioactivity data from >8,070 chemicals in ToxCast/Tox21 across 10 in vitro assays relevant to the retinoid signaling system were evaluated and compared to literature-based candidate reference chemicals in the dataset. There were 48 chemicals identified for effects on both in vivo skeletal defects and in vitro ATRA pathway targets for computational modeling. The list included 28 chemicals with prior evidence of skeletal defects linked to retinoid toxicity and 20 chemicals without prior evidence. The combination of thoracic cage defects and DR5 (direct repeats of 5 nucleotides for RAR/RXR transactivation) disruption was the most frequently occurring phenotypic and target disturbance, respectively. This data model provides valuable AOP elucidation and validates current mechanistic understanding. These findings also shed light on potential avenues for new mechanistic discoveries related to ATRA pathway disruption and associated skeletal dysmorphogenesis due to environmental exposures.

5.
Neurotoxicol Teratol ; 93: 107117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908584

RESUMO

To date, approximately 200 chemicals have been tested in US Environmental Protection Agency (EPA) or Organization for Economic Co-operation and Development (OECD) developmental neurotoxicity (DNT) guideline studies, leaving thousands of chemicals without traditional animal information on DNT hazard potential. To address this data gap, a battery of in vitro DNT new approach methodologies (NAMs) has been proposed. Evaluation of the performance of this battery will increase the confidence in its use to determine DNT chemical hazards. One approach to evaluate DNT NAM performance is to use a set of chemicals to evaluate sensitivity and specificity. Since a list of chemicals with potential evidence of in vivo DNT has been established, this study aims to develop a curated list of "negative" chemicals for inclusion in a "DNT NAM evaluation set". A workflow, including a literature search followed by an expert-driven literature review, was used to systematically screen 39 chemicals for lack of DNT effect. Expert panel members evaluated the scientific robustness of relevant studies to inform chemical categorizations. Following review, the panel discussed each chemical and made categorical determinations of "Favorable", "Not Favorable", or "Indeterminate" reflecting acceptance, lack of suitability, or uncertainty given specific limitations and considerations, respectively. The panel determined that 10, 22, and 7 chemicals met the criteria for "Favorable", "Not Favorable", and "Indeterminate", for use as negatives in a DNT NAM evaluation set. Ultimately, this approach not only supports DNT NAM performance evaluation but also highlights challenges in identifying large numbers of negative DNT chemicals.


Assuntos
Síndromes Neurotóxicas , Testes de Toxicidade , Animais , Síndromes Neurotóxicas/etiologia , Projetos de Pesquisa , Testes de Toxicidade/métodos , Estados Unidos , United States Environmental Protection Agency
6.
Curr Res Toxicol ; 3: 100074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633891

RESUMO

This manuscript provides a review focused on embryonic stem cell-based models and their place within the landscape of alternative developmental toxicity assays. Against the background of the principles of developmental toxicology, the wide diversity of alternative methods using pluripotent stem cells developed in this area over the past half century is reviewed. In order to provide an overview of available models, a systematic scoping review was conducted following a published protocol with inclusion criteria, which were applied to select the assays. Critical aspects including biological domain, readout endpoint, availability of standardized protocols, chemical domain, reproducibility and predictive power of each assay are described in detail, in order to review the applicability and limitations of the platform in general and progress moving forward to implementation. The horizon of innovative routes of promoting regulatory implementation of alternative methods is scanned, and recommendations for further work are given.

7.
ACS Omega ; 6(24): 16253, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179670

RESUMO

[This corrects the article DOI: 10.1021/acsomega.0c05591.].

8.
ACS Omega ; 6(4): 3186-3193, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553934

RESUMO

Rare diseases impact hundreds of millions of individuals worldwide. However, few therapies exist to treat the rare disease population because financial resources are limited, the number of patients affected is low, bioactivity data is often nonexistent, and very few animal models exist to support preclinical development efforts. Sialidosis is an ultrarare lysosomal storage disorder in which mutations in the NEU1 gene result in the deficiency of the lysosomal enzyme sialidase-1. This enzyme catalyzes the removal of sialic acid moieties from glycoproteins and glycolipids. Therefore, the defective or deficient protein leads to the buildup of sialylated glycoproteins as well as several characteristic symptoms of sialidosis including visual impairment, ataxia, hepatomegaly, dysostosis multiplex, and developmental delay. In this study, we used a bibliometric tool to generate links between lysosomal storage disease (LSD) targets and existing bioactivity data that could be curated in order to build machine learning models and screen compounds in silico. We focused on sialidase as an example, and we used the data curated from the literature to build a Bayesian model which was then used to score compound libraries and rank these molecules for in vitro testing. Two compounds were identified from in vitro testing using microscale thermophoresis, namely sulfameter (K d 2.15 ± 1.02 µM) and mexenone (K d 8.88 ± 4.02 µM), which validated our approach to identifying new molecules binding to this protein, which could represent possible drug candidates that can be evaluated further as potential chaperones for this ultrarare lysosomal disease for which there is currently no treatment. Combining bibliometric and machine learning approaches has the ability to assist in curating small molecule data and model building, respectively, for rare disease drug discovery. This approach also has the capability to identify new compounds that are potential drug candidates.

9.
NPJ Syst Biol Appl ; 7(1): 7, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504769

RESUMO

The ToxCast in vitro screening program has provided concentration-response bioactivity data across more than a thousand assay endpoints for thousands of chemicals found in our environment and commerce. However, most ToxCast screening assays have evaluated individual biological targets in cancer cell lines lacking integrated physiological functionality (such as receptor signaling, metabolism). We evaluated differentiated HepaRGTM cells, a human liver-derived cell model understood to effectively model physiologically relevant hepatic signaling. Expression of 93 gene transcripts was measured by quantitative polymerase chain reaction using Fluidigm 96.96 dynamic arrays in response to 1060 chemicals tested in eight-point concentration-response. A Bayesian framework quantitatively modeled chemical-induced changes in gene expression via six transcription factors including: aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, farnesoid X receptor, androgen receptor, and peroxisome proliferator-activated receptor alpha. For these chemicals the network model translates transcriptomic data into Bayesian inferences about molecular targets known to activate toxicological adverse outcome pathways. These data also provide new insights into the molecular signaling network of HepaRGTM cell cultures.


Assuntos
Hepatócitos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Toxicogenética/métodos , Teorema de Bayes , Técnicas de Cultura de Células , Linhagem Celular , Humanos , Fígado/citologia , Bibliotecas de Moléculas Pequenas , Fatores de Transcrição/efeitos dos fármacos , Transcriptoma/genética
10.
Reprod Toxicol ; 99: 160-167, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32926990

RESUMO

In recent years, the development and implementation of animal-free approaches to chemical and pharmaceutical hazard and risk assessment has taken off. Alternative approaches are being developed starting from the perspective of human biology and physiology. Neural tube closure is a vital step that occurs early in human development. Correct closure of the neural tube depends on a complex interplay between proteins along a number of protein concentration gradients. The sensitivity of neural tube closure to chemical disturbance of signalling pathways such as the retinoid pathway, is well known. To map the pathways underlying neural tube closure, literature data on the molecular regulation of neural tube closure were collected. As the process of neural tube closure is highly conserved in vertebrates, the extensive literature available for the mouse was used whilst considering its relevance for humans. Thus, important cell compartments, regulatory pathways, and protein interactions essential for neural tube closure under physiological circumstances were identified and mapped. An understanding of aberrant processes leading to neural tube defects (NTDs) requires detailed maps of neural tube embryology, including the complex genetic signals and responses underlying critical cellular dynamical and biomechanical processes. The retinoid signaling pathway serves as a case study for this ontology because of well-defined crosstalk with the genetic control of neural tube patterning and morphogenesis. It is a known target for mechanistically-diverse chemical structures that disrupt neural tube closure The data presented in this manuscript will set the stage for constructing mathematical models and computer simulation of neural tube closure for human-relevant AOPs and predictive toxicology.


Assuntos
Modelos Biológicos , Tubo Neural/crescimento & desenvolvimento , Animais , Simulação por Computador , Ectoderma , Desenvolvimento Embrionário , Humanos , Mesoderma , Camundongos , Crista Neural , Placa Neural , Defeitos do Tubo Neural , Notocorda , Biologia de Sistemas , Tretinoína/metabolismo
11.
Reprod Toxicol ; 99: 109-130, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33202217

RESUMO

All-trans retinoic acid (ATRA), the biologically active form of vitamin A, is instrumental in regulating the patterning and specification of the vertebrate embryo. Various animal models demonstrate adverse developmental phenotypes following experimental retinoid depletion or excess during pregnancy. Windows of vulnerability for altered skeletal patterning coincide with early specification of the body plan (gastrulation) and regional specification of precursor cell populations forming the facial skeleton (cranial neural crest), vertebral column (somites), and limbs (lateral plate mesoderm) during organogenesis. A common theme in physiological roles of ATRA signaling is mutual antagonism with FGF signaling. Consequences of genetic errors or environmental disruption of retinoid signaling include stage- and region-specific homeotic transformations to severe deficiencies for various skeletal elements. This review derives from an annex in Detailed Review Paper (DRP) of the OECD Test Guidelines Programme (Project 4.97) to support recommendations regarding assay development for the retinoid system and the use of resulting data in a regulatory context for developmental and reproductive toxicity (DART) testing.


Assuntos
Desenvolvimento Ósseo , Retinoides/metabolismo , Animais , Osso e Ossos/anormalidades , Osso e Ossos/metabolismo , Humanos , Transdução de Sinais , Teratogênese
13.
Reprod Toxicol ; 96: 300-315, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32590145

RESUMO

Development of the neurovascular unit (NVU) is a complex, multistage process that requires orchestrated cell signaling mechanisms across several cell types and ultimately results in formation of the blood-brain barrier. Typical high-throughput screening (HTS) assays investigate single biochemical or single cell responses following chemical insult. As the NVU comprises multiple cell types interacting at various stages of development, a methodology combining high-throughput results across pertinent cell-based assays is needed to investigate potential chemical-induced disruption to the development of this complex cell system. To this end, we implemented a novel method for screening putative NVU disruptors across diverse assay platforms to predict chemical perturbation of the developing NVU. HTS assay results measuring chemical-induced perturbations to cellular key events across angiogenic and neurogenic outcomes in vitro were combined to create a cell-based prioritization of NVU hazard. Chemicals were grouped according to similar modes of action to train a logistic regression literature model on a training set of 38 chemicals. This model utilizes the chemical-specific pairwise mutual information score for PubMed MeSH annotations to represent a quantitative measure of previously published results. Taken together, this study presents a methodology to investigate NVU developmental hazard using cell-based HTS assays and literature evidence to prioritize screening of putative NVU disruptors towards a knowledge-driven characterization of neurovascular developmental toxicity. The results from these screening efforts demonstrate that chemicals representing a range of putative vascular disrupting compound (pVDC) scores can also produce effects on neurogenic outcomes and characterizes possible modes of action for disrupting the developing NVU.


Assuntos
Substâncias Perigosas/toxicidade , Ensaios de Triagem em Larga Escala , Bioensaio , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Fibroblastos/efeitos dos fármacos , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Crista Neural/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos
14.
Toxicol Sci ; 174(2): 189-209, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073639

RESUMO

The Stemina devTOX quickPredict platform is a human pluripotent stem cell-based assay that predicts the developmental toxicity potential based on changes in cellular metabolism following chemical exposure [Palmer, J. A., Smith, A. M., Egnash, L. A., Conard, K. R., West, P. R., Burrier, R. E., Donley, E. L. R., and Kirchner, F. R. (2013). Establishment and assessment of a new human embryonic stem cell-based biomarker assay for developmental toxicity screening. Birth Defects Res. B Dev. Reprod. Toxicol. 98, 343-363]. Using this assay, we screened 1065 ToxCast phase I and II chemicals in single-concentration or concentration-response for the targeted biomarker (ratio of ornithine to cystine secreted or consumed from the media). The dataset from the Stemina (STM) assay is annotated in the ToxCast portfolio as STM. Major findings from the analysis of ToxCast_STM dataset include (1) 19% of 1065 chemicals yielded a prediction of developmental toxicity, (2) assay performance reached 79%-82% accuracy with high specificity (> 84%) but modest sensitivity (< 67%) when compared with in vivo animal models of human prenatal developmental toxicity, (3) sensitivity improved as more stringent weights of evidence requirements were applied to the animal studies, and (4) statistical analysis of the most potent chemical hits on specific biochemical targets in ToxCast revealed positive and negative associations with the STM response, providing insights into the mechanistic underpinnings of the targeted endpoint and its biological domain. The results of this study will be useful to improving our ability to predict in vivo developmental toxicants based on in vitro data and in silico models.


Assuntos
Alternativas aos Testes com Animais , Células-Tronco Pluripotentes/efeitos dos fármacos , Testes de Toxicidade , Animais , Bioensaio , Biomarcadores/metabolismo , Linhagem Celular , Bases de Dados Factuais , Relação Dose-Resposta a Droga , Ensaios de Triagem em Larga Escala , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Medição de Risco
15.
Curr Opin Toxicol ; 23-24(Oct-Dec 2020): 119-126, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36561131

RESUMO

New approach methodologies (NAMs) refer to any non-animal technology, methodology, approach, or combination thereof that can be used to provide information on chemical hazard and risk assessment that avoids the use of intact animals. A spectrum of in silico models is needed for the integrated analysis of various domains in toxicology to improve predictivity and reduce animal testing. This review focuses on in silico approaches, computer models, and computational intelligence for developmental and reproductive toxicity (predictive DART), providing a means to measure toxicodynamics in simulated systems for quantitative prediction of adverse outcomes phenotypes.

16.
Birth Defects Res ; 112(1): 19-39, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31471948

RESUMO

Cleft palate has been linked to both genetic and environmental factors that perturb key events during palatal morphogenesis. As a developmental outcome, it presents a challenging, mechanistically complex endpoint for predictive modeling. A data set of 500 chemicals evaluated for their ability to induce cleft palate in animal prenatal developmental studies was compiled from Toxicity Reference Database and the biomedical literature, which included 63 cleft palate active and 437 inactive chemicals. To characterize the potential molecular targets for chemical-induced cleft palate, we mined the ToxCast high-throughput screening database for patterns and linkages in bioactivity profiles and chemical structural descriptors. ToxCast assay results were filtered for cytotoxicity and grouped by target gene activity to produce a "gene score." Following unsuccessful attempts to derive a global prediction model using structural and gene score descriptors, hierarchical clustering was applied to the set of 63 cleft palate positives to extract local structure-bioactivity clusters for follow-up study. Patterns of enrichment were confirmed on the complete data set, that is, including cleft palate inactives, and putative molecular initiating events identified. The clusters corresponded to ToxCast assays for cytochrome P450s, G-protein coupled receptors, retinoic acid receptors, the glucocorticoid receptor, and tyrosine kinases/phosphatases. These patterns and linkages were organized into preliminary decision trees and the resulting inferences were mapped to a putative adverse outcome pathway framework for cleft palate supported by literature evidence of current mechanistic understanding. This general data-driven approach offers a promising avenue for mining chemical-bioassay drivers of complex developmental endpoints where data are often limited.


Assuntos
Fissura Palatina/etiologia , Bibliotecas de Moléculas Pequenas/análise , Testes de Toxicidade/métodos , Análise por Conglomerados , Bases de Dados Factuais , Feminino , Seguimentos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Medição de Risco
17.
Environ Sci Process Impacts ; 21(9): 1426-1445, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31305828

RESUMO

Connecting chemical exposures over a lifetime to complex chronic diseases with multifactorial causes such as neurodegenerative diseases is an immense challenge requiring a long-term, interdisciplinary approach. Rapid developments in analytical and data technologies, such as non-target high resolution mass spectrometry (NT-HR-MS), have opened up new possibilities to accomplish this, inconceivable 20 years ago. While NT-HR-MS is being applied to increasingly complex research questions, there are still many unidentified chemicals and uncertainties in linking exposures to human health outcomes and environmental impacts. In this perspective, we explore the possibilities and challenges involved in using cheminformatics and NT-HR-MS to answer complex questions that cross many scientific disciplines, taking the identification of potential (small molecule) neurotoxicants in environmental or biological matrices as a case study. We explore capturing literature knowledge and patient exposure information in a form amenable to high-throughput data mining, and the related cheminformatic challenges. We then briefly cover which sample matrices are available, which method(s) could potentially be used to detect these chemicals in various matrices and what remains beyond the reach of NT-HR-MS. We touch on the potential for biological validation systems to contribute to mechanistic understanding of observations and explore which sampling and data archiving strategies may be required to form an accurate, sustained picture of small molecule signatures on extensive cohorts of patients with chronic neurodegenerative disorders. Finally, we reflect on how NT-HR-MS can support unravelling the contribution of the environment to complex diseases.


Assuntos
Química Computacional , Exposição Ambiental/análise , Poluentes Ambientais/análise , Espectrometria de Massas/métodos , Doenças Neurodegenerativas/epidemiologia , Biomarcadores/análise , Humanos
18.
Curr Opin Toxicol ; 15(1): 55-63, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32030360

RESUMO

The more than 80,000 chemicals in commerce present a challenge for hazard assessments that toxicity testing in the 21st century strives to address through high-throughput screening (HTS) assays. Assessing chemical effects on human development adds an additional layer of complexity to the screening, with a need to capture complex and dynamic events essential for proper embryo-fetal development. HTS data from ToxCast/Tox21 informs systems toxicology models, which incorporate molecular targets and biological pathways into mechanistic models describing the effects of chemicals on human cells, 3D organotypic culture models, and small model organisms. Adverse Outcome Pathways (AOPs) provide a useful framework for integrating the evidence derived from these in silico and in vitro systems to inform chemical hazard characterization. To illustrate this formulation, we have built an AOP for developmental toxicity through a mode of action linked to embryonic vascular disruption (Aop43). Here, we review the model for quantitative prediction of developmental vascular toxicity from ToxCast HTS data and compare the HTS results to functional vascular development assays in complex cell systems, virtual tissues, and small model organisms. ToxCast HTS predictions from several published and unpublished assays covering different aspects of the angiogenic cycle were generated for a test set of 38 chemicals representing a range of putative vascular disrupting compounds (pVDCs). Results boost confidence in the capacity to predict adverse developmental outcomes from HTS in vitro data and model computational dynamics for in silico reconstruction of developmental systems biology. Finally, we demonstrate the integration of the AOP and developmental systems toxicology to investigate the unique modes of action of two angiogenesis inhibitors.

19.
Drug Discov Today ; 23(3): 661-672, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29330123

RESUMO

We have conducted a bibliometric review of drug repurposing by scanning >25 million papers in PubMed and using text-mining methods to gather, count and analyze chemical-disease therapeutic relationships. We find that >60% of the ∼35,000 drugs or drug candidates identified in our study have been tried in more than one disease, including 189 drugs that have been tried in >300 diseases each. Whereas in the majority of cases these drugs were applied in therapeutic areas close to their original use, there have been striking, and perhaps instructive, successful attempts of drug repurposing for unexpected, novel therapeutic areas.


Assuntos
Reposicionamento de Medicamentos/métodos , Preparações Farmacêuticas/química , Animais , Bibliometria , Biologia Computacional/métodos , Mineração de Dados/métodos , Humanos , PubMed
20.
Birth Defects Res ; 109(20): 1680-1710, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29251840

RESUMO

The blood-brain barrier (BBB) serves as a gateway for passage of drugs, chemicals, nutrients, metabolites, and hormones between vascular and neural compartments in the brain. Here, we review BBB development with regard to the microphysiology of the neurovascular unit (NVU) and the impact of BBB disruption on brain development. Our focus is on modeling these complex systems. Extant in silico models are available as tools to predict the probability of drug/chemical passage across the BBB; in vitro platforms for high-throughput screening and high-content imaging provide novel data streams for profiling chemical-biological interactions; and engineered human cell-based microphysiological systems provide empirical models with which to investigate the dynamics of NVU function. Computational models are needed that bring together kinetic and dynamic aspects of NVU function across gestation and under various physiological and toxicological scenarios. This integration will inform adverse outcome pathways to reduce uncertainty in translating in vitro data and in silico models for use in risk assessments that aim to protect neurodevelopmental health.


Assuntos
Barreira Hematoencefálica/patologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Biologia de Sistemas , Toxicologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...