Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(13): 3305-3314, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38869225

RESUMO

Physical properties of blood plasma, such as viscosity, serve as crucial indicators of disease. The inherent capillary effect of paper microchannels, coupled with minimal sample requirement, stimulated the advancement of paper-based viscometers. This study presents a precise, non-contact optoelectronic system using a microfluidic platform for the measurement of blood plasma viscosity. Microchannels were defined onto the filter paper using an available and inexpensive wax crayon, without the need for conventional wax printing equipment. The time required for the 5 µL sample to pass a specific distance was measured using two pairs of infrared sensors. Subsequently, this data was sent to the microcontroller, which automatically calculated the viscosity. Throughout the measurements, sample temperature was maintained at a constant 37 °C through an integrated heater with automated control. The microfluidic platform successfully processed real samples, yielding viscosity measurements in under three minutes. Evaluation with fetal bovine serum, spiked with varying protein concentrations in both native and denatured states, demonstrated a precision exceeding 96% compared to conventional Ostwald viscometer readings. For human subjects exhibiting pathologies affecting serum and plasma viscosity compared to physiological norms, strong correlations were observed between resultant values and clinical diagnoses. The proposed device aims to replace expensive and complex optical equipment, offering a safer alternative for measuring plasma viscosity. Unlike similar devices, it eliminates the risk of component deformation due to chemical contact or unsafe irradiation.


Assuntos
Viscosidade Sanguínea , Dispositivos Lab-On-A-Chip , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Bovinos , Animais , Sistemas Automatizados de Assistência Junto ao Leito , Desenho de Equipamento
2.
Anal Chim Acta ; 1239: 340641, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628743

RESUMO

The growing interest in lab-on-a-chip systems for plasma separation has led to the presentation of various devices. Trench-based devices benefiting from gravitational sedimentation are efficient structures with air-locking and low speed-drawbacks. The present study introduces a fast, hemolysis-free, highly efficient blood plasma separation microfluidic device. The proposed device is based on gravitational sedimentation combined with dielectrophoresis force to promote the purity of the separated plasma, reduce the separation process time, and overcome the air-locking problem. The effect of geometrical parameters on the separation process is investigated using finite element analysis to attain optimal design specifications. A drop of whole blood (10 µl) is injected into the fabricated chip at four flow rates of 70 nl/s to 100 nl/s. It takes less than 4 min to obtain 2.2 µl plasma from undiluted blood without losing plasma proteins. Additionally, a porous Melt-Blown Polypropylene (MBPP) layer is used to eliminate the air-locking problem, which in previous trench-based microsystems led to time-consuming device preparation steps. Blood samples with various hematocrits (15%-65%) are tested with the applied voltages of 0-20 Vpp through the optimized structure. A purity of 99.98% ± 0.02% (evaluated by hemocytometry) is achieved using optimized dielectrophoresis force by the applied voltage of 20 Vpp, which is more than the previous studies. The UV-Visible spectroscopy results confirm obtaining a non-hemolyzed sample at a flow rate of 70 nl/s. The proposed device achieves a relative increase in the flow rate compared to similar previous studies while maintaining the high quality of the separated plasma. This achievement lies in using the MBPP layer and combining two separation methods.


Assuntos
Técnicas Analíticas Microfluídicas , Plasma/química , Hematócrito , Proteínas Sanguíneas/análise , Dispositivos Lab-On-A-Chip
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...