Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(48): 19118-19129, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31697078

RESUMO

The relation between the chemical structure and the mechanical behavior of molecular machines is of paramount importance for a rational design of superior nanomachines. Here, we report on a mechanistic study of a nanometer scale translational movement in two bistable rotaxanes. Both rotaxanes consist of a tetra-amide macrocycle interlocked onto a polyether axle. The macrocycle can shuttle between an initial succinamide station and a 3,6-dihydroxy- or 3,6-di-tert-butyl-1,8-naphthalimide end stations. Translocation of the macrocycle is controlled by a hydrogen-bonding equilibrium between the stations. The equilibrium can be perturbed photochemically by either intermolecular proton or electron transfer depending on the system. To the best of our knowledge, utilization of proton transfer from a conventional photoacid for the operation of a molecular machine is demonstrated for the first time. The shuttling dynamics are monitored by means of UV-vis and IR transient absorption spectroscopies. The polyether axle accelerates the shuttling by ∼70% compared to a structurally similar rotaxane with an all-alkane thread of the same length. The acceleration is attributed to a decrease in activation energy due to an early transition state where the macrocycle partially hydrogen bonds to the ether group of the axle. The dihydroxyrotaxane exhibits the fastest shuttling speed over a nanometer distance (τshuttling ≈ 30 ns) reported to date. The shuttling in this case is proposed to take place via a so-called harpooning mechanism where the transition state involves a folded conformation due to the hydrogen-bonding interactions with the hydroxyl groups of the end station.


Assuntos
Hidrogênio/química , Rotaxanos/química , Amidas/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Naftalimidas/química , Prótons , Succinatos/química
2.
Nat Commun ; 8(1): 2206, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263325

RESUMO

Synthetic molecular machines are promising building blocks for future nanoscopic devices. However, the details of their mechanical behaviour are in many cases still largely unknown. A deeper understanding of mechanics at the molecular level is essential for the design and construction of complex nanodevices. Here, we show that transient two-dimensional infrared (T2DIR) spectroscopy makes it possible to monitor the conformational changes of a translational molecular machine during its operation. Translation of a macrocyclic ring from one station to another on a molecular thread is initiated by a UV pulse. The arrival of the shuttling macrocycle at the final station is visible from a newly appearing cross peak between these two moieties. To eliminate spectral congestion in the T2DIR spectra, we use a subtraction method applicable to many other complex molecular systems. The T2DIR spectra indicate that the macrocycle adopts a boat-like conformation at the final station, which contrasts with the chair-like conformation at the initial station.

3.
Phys Chem Chem Phys ; 17(32): 20715-24, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26204802

RESUMO

Complex formation and intermolecular excited-state proton transfer (ESPT) between a dihydroxy-1,8-naphthalimide photoacid and organic bases are investigated in polar aprotic solvents. First, quantum chemical calculations are used to explore the acid-base and spectroscopic properties and to identify energetically favorable complexes. The two hydroxyl groups of the photoacid enable stepwise formation of 1 : 1 and 1 : 2 complexes. Weak bases exhibit only hydrogen-bonding interactions whereas strong bases are able to deprotonate one of the hydroxyl groups resulting in strong negative cooperativity (K1≫ 4K2) in the formation of the 1 : 2 complex. Time-resolved fluorescence studies of the complexes provide strong indications of a three-step dissociation process. The species involved in the model are: a hydrogen-bonded complex, a hydrogen-bonded ion pair, a solvent separated ion pair, and a free ion pair.

4.
J Phys Chem B ; 119(6): 2515-24, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25225779

RESUMO

The ground- and excited-state acid-base properties of three novel naphthalimide-based "super" photoacids were studied using steady-state and time-resolved spectroscopy. The compounds exhibit pKa = 8.8-8.0 and pKa* = -1.2 to -1.9. The decrease in both ground- and excited-state pKa is achieved by attachment of an electron withdrawing group (sulfonate) on the aromatic system. All compounds are deprotonated upon excitation in alcohols and DMSO. Good correlation is established between the pKa* and the ratio of the neutral and anion emission intensities in a certain solvent. The excited-state intermolecular proton transfer to solvent (H2O and DMSO) is explained by a two-step model. In the first step, short-range proton transfer takes place, resulting in the formation of a contact ion pair. Free ion pairs are formed in the diffusion controlled second step.

5.
J Phys Chem B ; 118(43): 12395-403, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25289691

RESUMO

We report on experimental high-resolution spectroscopic studies in combination with ab initio computational studies that investigate the excited-state dynamics of methyl-4-hydroxycinnamate thioester and (5-hydroxyindan-(1E)-ylidene)acetic acid, derivatives of the photoactive yellow protein (PYP) chromophore. These studies aim to elucidate (a) how the thioester moiety influences the photophysics and photochemistry of the p-coumaric acid chromophore and (b) to what extent rotation of the single bond adjacent to the phenyl ring is involved in the decay dynamics of the electronically excited states. The experimental studies show that sulfur substitution leads to broad, unstructured excitation spectra that contrast sharply with the well-resolved spectra of compounds with an oxygen-based ester. Furthermore, internal conversion to the lower-lying nπ* state is absent. The absence of this decay channel is rationalized by quantum-chemical calculations that reveal that in the nπ* state of the thio compounds the molecule exhibits a large out-of-plane "kink" at the sulfur atom. Franck-Condon simulations of the excitation spectra of the V(ππ*) state highlight the activity of various vibrational modes in the neutral chromophore and indicate that upon sulfur substitution internal conversion to the ground state occurs at a significantly higher rate. The similarities observed in the excitation spectra and decay dynamics of the locked and unlocked compounds suggest that in the present experiments single-bond torsion does not show up prominently. The conclusion that for the isolated molecule double-bond torsion is dominating the excited-state dynamics is tentatively confirmed by the quantum-chemical calculations.


Assuntos
Proteínas de Bactérias/química , Ácidos Cumáricos/química , Fotorreceptores Microbianos/química , Rotação , Acetatos/química , Modelos Moleculares , Propionatos , Conformação Proteica , Teoria Quântica , Análise Espectral , Enxofre/química
6.
Nat Chem ; 5(11): 929-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24153370

RESUMO

The mechanical behaviour of molecular machines differs greatly from that of their macroscopic counterparts. This applies particularly when considering concepts such as friction and lubrication, which are key to optimizing the operation of macroscopic machinery. Here, using time-resolved vibrational spectroscopy and NMR-lineshape analysis, we show that for molecular machinery consisting of hydrogen-bonded components the relative motion of the components is accelerated strongly by adding small amounts of water. The translation of a macrocycle along a thread and the rotation of a molecular wheel around an axle both accelerate significantly on the addition of water, whereas other protic liquids have much weaker or opposite effects. We tentatively assign the superior accelerating effect of water to its ability to form a three-dimensional hydrogen-bond network between the moving parts of the molecular machine. These results may indicate a more general phenomenon that helps explain the function of water as the 'lubricant of life'.


Assuntos
Acetonitrilas/química , Água/química , Derivados de Benzeno/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Piridinas/química , Rotaxanos/química , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Faraday Discuss ; 163: 321-40; discussion 393-432, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24020209

RESUMO

We report on experimental high-resolution spectroscopic studies in combination with advanced theoretical calculations that focus on the excited-state dynamics of various forms of the chromophore of the Photoactive Yellow Protein (PYP), and the dependence of these dynamics on conformational and isosteric structure, as well as the biological environment. Three-colour nanosecond multiphoton ionization pump-probe studies confirm and extend previous conclusions that the dominant decay channel of the lowest excited pipi* state (the so-called V' state) of methyl-4-hydroxycinnamate is picosecond internal conversion to the adiabatically lower nPi* state, and enable us to resolve apparent contradictions with picosecond pump-probe studies. Comparison of multiphoton ionization and laser induced fluorescence excitation spectra leads to the assignment of the hitherto elusive excitation spectrum of the V(pipi*) state. Complexation of methyl-4-hydroxycinnamate with water radically changes the excited-state dynamics; internal conversion to the npi* state is absent, and bond isomerization channels instead play a prominent role. Excited states of the thio-ester compound, the form in which the chromophore is present in PYP, have till the present study remained out of reach of gas-phase studies. The excitation spectra obtained here show a broad, almost structureless band system, giving evidence for enhanced nonradiative decay channels. The gas-phase results will be discussed in the context of results from ultrafast studies on these two chromophores in solution.


Assuntos
Compostos Cromogênicos/química , Cinamatos/química , Ácidos Cumáricos/química , Simulação de Dinâmica Molecular , Propionatos , Análise Espectral
8.
Rev Sci Instrum ; 84(3): 033103, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23556803

RESUMO

An optically transparent thin-layer electrochemical (OTTLE) cell with a locally extended optical path has been developed in order to perform vibrational circular dichroism (VCD) spectroscopy on chiral molecules prepared in specific oxidation states by means of electrochemical reduction or oxidation. The new design of the electrochemical cell successfully addresses the technical challenges involved in achieving sufficient infrared absorption. The VCD-OTTLE cell proves to be a valuable tool for the investigation of chiral redox-active molecules.

9.
Chem Commun (Camb) ; 48(3): 353-5, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22002107

RESUMO

Vibrational circular dichroism is a powerful technique to study the stereochemistry of chiral molecules, but often suffers from small signal intensities. Electrochemical modulation of the energies of the electronically excited state manifold is now demonstrated to lead to an order of magnitude enhancement of the differential absorption. Quantum-chemical calculations show that increased mixing between ground and excited states is at the origin of this amplification.


Assuntos
Dicroísmo Circular , Técnicas Eletroquímicas , Elétrons , Isoquinolinas/química , Oxirredução , Teoria Quântica , Estereoisomerismo
10.
Phys Chem Chem Phys ; 14(6): 1865-75, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22033540

RESUMO

Time-resolved vibrational spectroscopy is used to investigate the inter-component motion of an ultraviolet-triggered two-station molecular shuttle. The operation cycle of this molecular shuttle involves several intermediate species, which are observable in the amide I and amide II regions of the mid-IR spectrum. Using ab initio calculations on specific parts of the rotaxane, and by comparing the transient spectra of the normal rotaxane with that of the N-deuterated version, we can assign the observed vibrational modes of each species occurring during the shuttling cycle in an unambiguous way. The complete time- and frequency-dependent data set is analyzed using singular value decomposition (SVD). Using a kinetic model to describe the time-dependent concentrations of the transient species, we derive the absorption spectra associated with each stage in the operation cycle of the molecular shuttle, including the recombination of the charged species.

11.
Science ; 328(5983): 1255-8, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20522770

RESUMO

Rotaxanes comprise macrocycles that can shuttle between docking stations along an axle. We explored the nanosecond shuttling mechanism by reversing the relative binding affinities of two stations through ultraviolet-induced transient reduction. We monitored the ensuing changes in the CO-stretching bands of the two stations and the shuttling macrocycle by means of an infrared probing pulse. Because hydrogen-bond scission and formation at the initial and final stations led to well-resolved changes in the respective CO-stretch frequencies, the departure and arrival of the macrocycle could be observed separately. We found that the shuttling involves two steps: thermally driven escape from the initial station, followed by rapid motion along the track ending either at the initial or final station. By varying the track's length, we found that the rapid motion approximates a biased one-dimensional random walk. However, surprisingly, the direction of the overall motion is opposite that of the bias.

12.
Phys Chem Chem Phys ; 12(25): 6789-94, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20448866

RESUMO

To design more effective CIEEL (chemically initiated electron exchange luminescence) systems demands a complete picture of the dynamics of the chemiluminescence, which is often a challenge. In this work, photoluminescence of the methyl m-oxybenzoate anion - the authentic emitter of AMPPD (3-[2-spiroadamantane]-4-methoxy-4-[3-phosphoryloxy]-phenyl-1,2-dioxetane) in aqueous solvent has been studied. Combining the effect of solvent properties, e.g. pH value, and spectroscopic studies employing steady-state and ultrafast time-resolved emission and absorption and (1)H NMR techniques, a novel mechanism is proposed. We conclude that the deviation of emission peaks between chemiluminescence and photoluminescence of the authentic emitter of AMPPD i.e. the methyl m-oxybenzoate anion, in alkaline aqueous solvents is due to its hydrolysis, rather than the hydrogen-bonding effect as has been assumed so far. Besides, the hydrogen-bonding is suggested to play a key role in significantly decreasing the chemiluminescence yield of AMPPD in aqueous solution by shortening the lifetime of the excited authentic emitter to 10 ps order of magnitude - three orders of magnitude shorter than the previously reported value ( approximately 10 ns). These results shed light on the chemiluminescence dynamics of AMPPD and facilitate the design of more effective CIEEL systems.


Assuntos
Adamantano/análogos & derivados , Adamantano/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Hidrólise , Espectroscopia de Ressonância Magnética , Espectrometria de Fluorescência
13.
Acc Chem Res ; 42(9): 1462-9, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19650645

RESUMO

It has recently become possible to synthesize mechanical devices the size of a single molecule. Although it is tempting to regard such molecular machines as nanoscale versions of their macroscopic analogs, many notions from macroscopic mechanics no longer apply at a molecular level. For instance, the concept of viscous friction is meaningless for a molecular machine because the size of the solvent molecules that cause the friction is comparable to that of the machine itself. Furthermore, in many cases, the interactions between a molecular machine and its surroundings are comparable to the force driving the machine. As a result, a certain amount of intrinsic randomness exists in the motion of molecular machines, and the details of their mechanics are largely unknown. For a detailed understanding of the mechanical behavior of molecular machines, experiments that probe their motion on an ultrafast time scale, such as two-dimensional (2D) vibrational spectroscopy, are essential. This method uses coupling between vibrational modes in a molecule to investigate the molecular conformation. The coupling shows up as off-diagonal peaks in a 2D graph of the vibrational response of the molecule, analogous to the spin coupling observed in multidimensional NMR spectroscopy. Both spin coupling and vibrational coupling are sensitive probes of the molecular conformation, but 2D vibrational spectroscopy shows orders of magnitude better time resolution than NMR. In this Account, we use 2D vibrational spectroscopy to study molecular machines based on rotaxanes. These devices consist of a linear thread and a macrocycle that is noncovalently locked onto the thread. In the rotaxanes we study, the macrocycle and the thread both contain CO and NH groups. By determining the coupling between the stretching modes of these goups from the cross peaks in the 2D spectrum, we directly and quantitatively probe the relative position and orientation of the macrocycle and the thread for both a small model rotaxane and a rotaxane-based molecular shuttle. Our results demonstrate the feasibility of using time-resolved 2D-IR experiments to measure externally triggered structural changes of molecular devices with subpicosecond time resolution. We can observe each of the elementary events that underlie the mechanical motion separately. With this ability to investigate the nature of the mechanical motions at the molecular level and with unprecedented time resolution, we expect that 2D-IR spectroscopy on molecular machines will lead to new insights into their function.


Assuntos
Rotaxanos/química , Vibração , Absorção , Cor , Modelos Moleculares , Conformação Molecular , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...