Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5252, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898007

RESUMO

Silicon is indisputably the most advanced material for scalable electronics, but it is a poor choice as a light source for photonic applications, due to its indirect band gap. The recently developed hexagonal Si1-xGex semiconductor features a direct bandgap at least for x > 0.65, and the realization of quantum heterostructures would unlock new opportunities for advanced optoelectronic devices based on the SiGe system. Here, we demonstrate the synthesis and characterization of direct bandgap quantum wells realized in the hexagonal Si1-xGex system. Photoluminescence experiments on hex-Ge/Si0.2Ge0.8 quantum wells demonstrate quantum confinement in the hex-Ge segment with type-I band alignment, showing light emission up to room temperature. Moreover, the tuning range of the quantum well emission energy can be extended using hexagonal Si1-xGex/Si1-yGey quantum wells with additional Si in the well. These experimental findings are supported with ab initio bandstructure calculations. A direct bandgap with type-I band alignment is pivotal for the development of novel low-dimensional light emitting devices based on hexagonal Si1-xGex alloys, which have been out of reach for this material system until now.

2.
Nano Lett ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848282

RESUMO

Gatemon qubits are the electrically tunable cousins of superconducting transmon qubits. In this work, we demonstrate the full coherent control of a gatemon qubit based on hole carriers in a Ge/Si core/shell nanowire, with the longest coherence times in group IV material gatemons to date. The key to these results is a high-quality Josephson junction obtained using a straightforward and reproducible annealing technique. We demonstrate that the transport through the narrow junction is dominated by only two quantum channels, with transparencies up to unity. This novel qubit platform holds great promise for quantum information applications, not only because it incorporates technologically relevant materials, but also because it provides new opportunities, like an ultrastrong spin-orbit coupling in the few-channel regime of Josephson junctions.

3.
Nanotechnology ; 35(32)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38710174

RESUMO

Topological crystalline insulators (TCIs) are interesting for their topological surface states, which hold great promise for scattering-free transport channels and fault-tolerant quantum computing. A promising TCI is SnTe. However, Sn-vacancies form in SnTe, causing a high hole density, hindering topological transport from the surface being measured. This issue could be relieved by using nanowires with a high surface-to-volume ratio. Furthermore, SnTe can be alloyed with Pb reducing the Sn-vacancies while maintaining its topological phase. Here we present the catalyst-free growth of monocrystalline PbSnTe in molecular beam epitaxy. By the addition of a pre-deposition stage before the growth, we have control over the nucleation phase and thereby increase the nanowire yield. This facilitates tuning the nanowire aspect ratio by a factor of four by varying the growth parameters. These results allow us to grow specific morphologies for future transport experiments to probe the topological surface states in a Pb1-xSnxTe-based platform.

4.
Nanotechnology ; 35(25)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38467064

RESUMO

Semiconductor nanowire (NW) quantum devices offer a promising path for the pursuit and investigation of topologically-protected quantum states, and superconducting and spin-based qubits that can be controlled using electric fields. Theoretical investigations into the impact of disorder on the attainment of dependable topological states in semiconducting nanowires with large spin-orbit coupling andg-factor highlight the critical need for improvements in both growth processes and nanofabrication techniques. In this work, we used a hybrid lithography tool for both the high-resolution thermal scanning probe lithography and high-throughput direct laser writing of quantum devices based on thin InSb nanowires with contact spacing of 200 nm. Electrical characterization demonstrates quasi-ballistic transport. The methodology outlined in this study has the potential to reduce the impact of disorder caused by fabrication processes in quantum devices based on 1D semiconductors.

6.
Chem Rev ; 124(5): 2419-2440, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38394689

RESUMO

Nanowires are natural one-dimensional channels and offer new opportunities for advanced electronic quantum transport experiments. We review recent progress on the synthesis of nanowires and methods for the fabrication of hybrid semiconductor/superconductor systems. We discuss methods to characterize their electronic properties in the context of possible future applications such as topological and spin qubits. We focus on group III-V (InAs and InSb) and group IV (Ge/Si) semiconductors, since these are the most developed, and give an outlook on other potential materials.

7.
ACS Appl Nano Mater ; 7(2): 2343-2351, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38298254

RESUMO

Monolithic integration of silicon-based electronics and photonics could open the door toward many opportunities including on-chip optical data communication and large-scale application of light-based sensing devices in healthcare and automotive; by some, it is considered the Holy Grail of silicon photonics. The monolithic integration is, however, severely hampered by the inability of Si to efficiently emit light. Recently, important progress has been made by the demonstration of efficient light emission from direct-bandgap hexagonal SiGe (hex-SiGe) alloy nanowires. For this promising material, realized by employing a nanowire structure, many challenges and open questions remain before a large-scale application can be realized. Considering that for other direct-bandgap materials like GaAs, surface recombination can be a true bottleneck, one of the open questions is the importance of surface recombination for the photoluminescence efficiency of this new material. In this work, temperature-dependent photoluminescence measurements were performed on both hex-Ge and hex-SiGe nanowires with and without surface passivation schemes that have been well documented and proven effective on cubic silicon and germanium to elucidate whether and to what extent the internal quantum efficiency (IQE) of the wires can be improved. Additionally, time-resolved photoluminescence (TRPL) measurements were performed on unpassivated hex-SiGe nanowires as a function of their diameter. The dependence of the surface recombination on the SiGe composition could, however, not be yet addressed given the sample-to-sample variations of the state-of-the-art hex-SiGe nanowires. With the aforementioned experiments, we demonstrate that at room temperature, under high excitation conditions (a few kW cm-2), the hex-(Si)Ge surface is most likely not a bottleneck for efficient radiative emission under relatively high excitation conditions. This is an important asset for future hex(Si)Ge optoelectronic devices, specifically for nanolasers.

8.
Nat Commun ; 14(1): 6880, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898657

RESUMO

Semiconductor nanowires coupled to superconductors can host Andreev bound states with distinct spin and parity, including a spin-zero state with an even number of electrons and a spin-1/2 state with odd-parity. Considering the difference in spin of the even and odd states, spin-filtered measurements can reveal the underlying ground state. To directly measure the spin of single-electron excitations, we probe an Andreev bound state using a spin-polarized quantum dot that acts as a bipolar spin filter, in combination with a non-polarized tunnel junction in a three-terminal circuit. We observe a spin-polarized excitation spectrum of the Andreev bound state, which can be fully spin-polarized, despite strong spin-orbit interaction in the InSb nanowires. Decoupling the hybrid from the normal lead causes a current blockade, by trapping the Andreev bound state in an excited state. Spin-polarized spectroscopy of hybrid nanowire devices, as demonstrated here, is proposed as an experimental tool to support the observation of topological superconductivity.

9.
Nat Commun ; 14(1): 6647, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863952

RESUMO

Tunneling spectroscopy is widely used to examine the subgap spectra in semiconductor-superconductor nanostructures when searching for Majorana zero modes (MZMs). Typically, semiconductor sections controlled by local gates at the ends of hybrids serve as tunnel barriers. Besides detecting states only at the hybrid ends, such gate-defined tunnel probes can cause the formation of non-topological subgap states that mimic MZMs. Here, we develop an alternative type of tunnel probes to overcome these limitations. After the growth of an InSb-Al hybrid nanowire, a precisely controlled in-situ oxidation of the Al shell is performed to yield a nm-thick AlOx layer. In such thin isolating layer, tunnel probes can be arbitrarily defined at any position along the hybrid nanowire by shadow-wall angle-deposition of metallic leads. In this work, we make multiple tunnel probes along single nanowire hybrids and successfully identify Andreev bound states (ABSs) of various spatial extension residing along the hybrids.

10.
Nat Commun ; 14(1): 3325, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286544

RESUMO

The proximity effect in semiconductor-superconductor nanowires is expected to generate an induced gap in the semiconductor. The magnitude of this induced gap, together with the semiconductor properties like spin-orbit coupling and g-factor, depends on the coupling between the materials. It is predicted that this coupling can be adjusted through the use of electric fields. We study this phenomenon in InSb/Al/Pt hybrids using nonlocal spectroscopy. We show that these hybrids can be tuned such that the semiconductor and superconductor are strongly coupled. In this case, the induced gap is similar to the superconducting gap in the Al/Pt shell and closes only at high magnetic fields. In contrast, the coupling can be suppressed which leads to a strong reduction of the induced gap and critical magnetic field. At the crossover between the strong-coupling and weak-coupling regimes, we observe the closing and reopening of the induced gap in the bulk of a nanowire. Contrary to expectations, it is not accompanied by the formation of zero-bias peaks in the local conductance spectra. As a result, this cannot be attributed conclusively to the anticipated topological phase transition and we discuss possible alternative explanations.

11.
Nano Lett ; 23(11): 4716-4722, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37212490

RESUMO

Semiconducting nanowire Josephson junctions represent an attractive platform to investigate the anomalous Josephson effect and detect topological superconductivity. However, an external magnetic field generally suppresses the supercurrent through hybrid nanowire junctions and significantly limits the field range in which the supercurrent phenomena can be studied. In this work, we investigate the impact of the length of InSb-Al nanowire Josephson junctions on the supercurrent resilience against magnetic fields. We find that the critical parallel field of the supercurrent can be considerably enhanced by reducing the junction length. Particularly, in 30 nm long junctions supercurrent can persist up to 1.3 T parallel field─approaching the critical field of the superconducting film. Furthermore, we embed such short junctions into a superconducting loop and obtain the supercurrent interference at a parallel field of 1 T. Our findings are highly relevant for multiple experiments on hybrid nanowires requiring a magnetic-field-resilient supercurrent.

12.
Nature ; 614(7948): 445-450, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792741

RESUMO

Majorana bound states constitute one of the simplest examples of emergent non-Abelian excitations in condensed matter physics. A toy model proposed by Kitaev shows that such states can arise at the ends of a spinless p-wave superconducting chain1. Practical proposals for its realization2,3 require coupling neighbouring quantum dots (QDs) in a chain through both electron tunnelling and crossed Andreev reflection4. Although both processes have been observed in semiconducting nanowires and carbon nanotubes5-8, crossed-Andreev interaction was neither easily tunable nor strong enough to induce coherent hybridization of dot states. Here we demonstrate the simultaneous presence of all necessary ingredients for an artificial Kitaev chain: two spin-polarized QDs in an InSb nanowire strongly coupled by both elastic co-tunnelling (ECT) and crossed Andreev reflection (CAR). We fine-tune this system to a sweet spot where a pair of poor man's Majorana states is predicted to appear. At this sweet spot, the transport characteristics satisfy the theoretical predictions for such a system, including pairwise correlation, zero charge and stability against local perturbations. Although the simple system presented here can be scaled to simulate a full Kitaev chain with an emergent topological order, it can also be used imminently to explore relevant physics related to non-Abelian anyons.

13.
Nature ; 612(7940): 448-453, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36418399

RESUMO

In most naturally occurring superconductors, electrons with opposite spins form Cooper pairs. This includes both conventional s-wave superconductors such as aluminium, as well as high-transition-temperature, d-wave superconductors. Materials with intrinsic p-wave superconductivity, hosting Cooper pairs made of equal-spin electrons, have not been conclusively identified, nor synthesized, despite promising progress1-3. Instead, engineered platforms where s-wave superconductors are brought into contact with magnetic materials have shown convincing signatures of equal-spin pairing4-6. Here we directly measure equal-spin pairing between spin-polarized quantum dots. This pairing is proximity-induced from an s-wave superconductor into a semiconducting nanowire with strong spin-orbit interaction. We demonstrate such pairing by showing that breaking a Cooper pair can result in two electrons with equal spin polarization. Our results demonstrate controllable detection of singlet and triplet pairing between the quantum dots. Achieving such triplet pairing in a sequence of quantum dots will be required for realizing an artificial Kitaev chain7-9.

14.
Nano Lett ; 22(17): 7049-7056, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35998346

RESUMO

PbTe is a semiconductor with promising properties for topological quantum computing applications. Here, we characterize electron quantum dots in PbTe nanowires selectively grown on InP. Charge stability diagrams at zero magnetic field reveal large even-odd spacing between Coulomb blockade peaks, charging energies below 140 µeV and Kondo peaks in odd Coulomb diamonds. We attribute the large even-odd spacing to the large dielectric constant and small effective electron mass of PbTe. By studying the Zeeman-induced level and Kondo splitting in finite magnetic fields, we extract the electron g-factor as a function of magnetic field direction. We find the g-factor tensor to be highly anisotropic with principal g-factors ranging from 0.9 to 22.4 and to depend on the electronic configuration of the devices. These results indicate strong Rashba spin-orbit interaction in our PbTe quantum dots.

15.
Adv Mater ; 34(33): e2202034, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35680622

RESUMO

In superconducting quantum circuits, aluminum is one of the most widely used materials. It is currently also the superconductor of choice for the development of topological qubits. However, aluminum-based devices suffer from poor magnetic field compatibility. Herein, this limitation is resolved by showing that adatoms of heavy elements (e.g., platinum) increase the critical field of thin aluminum films by more than a factor of two. Using tunnel junctions, it is shown that the increased field resilience originates from spin-orbit scattering introduced by Pt. This property is exploited in the context of the superconducting proximity effect in semiconductor-superconductor hybrids, where it is shown that InSb nanowires strongly coupled to Al/Pt films can maintain superconductivity up to 7 T. The two-electron charging effect is shown to be robust against the presence of heavy adatoms. Additionally, non-local spectroscopy is used in a three-terminal geometry to probe the bulk of hybrid devices, showing that it remains free of sub-gap states. Finally, it is demonstrated that proximitized semiconductor states maintain their ability to Zeeman-split in an applied magnetic field. Combined with the chemical stability and well-known fabrication routes of aluminum, Al/Pt emerges as the natural successor to Al-based systems and is a compelling alternative to other superconductors, whenever high-field resilience is required.

16.
Sci Adv ; 8(16): eabm9896, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452283

RESUMO

We study a Cooper pair transistor realized by two Josephson weak links that enclose a superconducting island in an InSb-Al hybrid nanowire. When the nanowire is subject to a magnetic field, isolated subgap levels arise in the superconducting island and, because of the Coulomb blockade, mediate a supercurrent by coherent cotunneling of Cooper pairs. We show that the supercurrent resulting from such cotunneling events exhibits, for low to moderate magnetic fields, a phase offset that discriminates even and odd charge ground states on the superconducting island. Notably, this phase offset persists when a subgap state approaches zero energy and, based on theoretical considerations, permits parity measurements of subgap states by supercurrent interferometry. Such supercurrent parity measurements could, in a series of experiments, provide an alternative approach for manipulating and protecting quantum information stored in the isolated subgap levels of superconducting islands.

18.
Adv Sci (Weinh) ; 9(12): e2105722, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182039

RESUMO

Indium antimonide (InSb) nanowires are used as building blocks for quantum devices because of their unique properties, that is, strong spin-orbit interaction and large Landé g-factor. Integrating InSb nanowires with other materials could potentially unfold novel devices with distinctive functionality. A prominent example is the combination of InSb nanowires with superconductors for the emerging topological particles research. Here, the combination of the II-VI cadmium telluride (CdTe) with the III-V InSb in the form of core-shell (InSb-CdTe) nanowires is investigated and potential applications based on the electronic structure of the InSb-CdTe interface and the epitaxy of CdTe on the InSb nanowires are explored. The electronic structure of the InSb-CdTe interface using density functional theory is determined and a type-I band alignment is extracted with a small conduction band offset ( ⩽0.3 eV). These results indicate the potential application of these shells for surface passivation or as tunnel barriers in combination with superconductors. In terms of structural quality, it is demonstrated that the lattice-matched CdTe can be grown epitaxially on the InSb nanowires without interfacial strain or defects. These shells do not introduce disorder to the InSb nanowires as indicated by the comparable field-effect mobility measured for both uncapped and CdTe-capped nanowires.

19.
Nat Commun ; 12(1): 4914, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389705

RESUMO

The realization of hybrid superconductor-semiconductor quantum devices, in particular a topological qubit, calls for advanced techniques to readily and reproducibly engineer induced superconductivity in semiconductor nanowires. Here, we introduce an on-chip fabrication paradigm based on shadow walls that offers substantial advances in device quality and reproducibility. It allows for the implementation of hybrid quantum devices and ultimately topological qubits while eliminating fabrication steps such as lithography and etching. This is critical to preserve the integrity and homogeneity of the fragile hybrid interfaces. The approach simplifies the reproducible fabrication of devices with a hard induced superconducting gap and ballistic normal-/superconductor junctions. Large gate-tunable supercurrents and high-order multiple Andreev reflections manifest the exceptional coherence of the resulting nanowire Josephson junctions. Our approach enables the realization of 3-terminal devices, where zero-bias conductance peaks emerge in a magnetic field concurrently at both boundaries of the one-dimensional hybrids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...