Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954636

RESUMO

The photoinduced generation of a superoxide anion on the surface of a semiconductor photocatalyst is usually attributed to the reduction of O2 with conduction-band electrons. In the current work, the reaction of TiO2 with O2 giving rise to TiO4 in superoxide and peroxide states has been investigated with ab initio (CAS, CCSD) and DFT (B3LYP) calculations. The ground triplet state and two substates (open-shell singlet (OSS) and closed-shell singlet (CSS)) of a doubly degenerate excited singlet state (a1Δg) are considered as reactive states of oxygen, participating in spontaneous or photoinduced processes, respectively. The triplet and OSS singlet states of TiO4 contain O2- as structural units and can be defined as titanium superoxides. Both states have energy less than the level of the initial pair TiO2+O2 by about 30 kcal/mol. The CSS state of TiO4 has a diperoxide structure Ti4+(O22-)2 and also lies in energy below the initial pair TiO2+3O2. Titanium superoxide is considered to be the carrier of an "exceptionally stable" and "long-lived" superoxide anion, which was earlier synthesized or detected on the surface of TiO2. The low-energy location of the conical intersections on the way from reagents to 3TiO4 allows us to explain the literature data on the spontaneous generation of the "long-lived" superoxide anion on the TiO2 surface.

2.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445807

RESUMO

Protein unfolding is a ubiquitous process responsible for the loss of protein functionality (denaturation), which, in turn, can be accompanied by the death of cells and organisms. The nature of enthalpy-entropy compensation (EEC) in the kinetics of protein unfolding is a subject of debate. In order to investigate the nature of EEC, the "completely loose" transition state (TS) model has been applied to calculate the Arrhenius parameters for the unfolding of polyglycine dimers as a model process. The calculated Arrhenius parameters increase with increasing dimer length and demonstrate enthalpy-entropy compensation. It is shown that EEC results from the linear correlations of enthalpy and entropy of activation with dimer length, which are derived directly from the properties of the transition state. It is shown that EEC in solvated (hydrated, etc.) proteins is a direct consequence of EEC in proteins themselves. The suggested model allows us also to reproduce and explain "exotic" very high values of the pre-exponential factor measured for the proteins unfolding, which are drastically higher than those known for unimolecular reactions of organic molecules. A similar approach can be applied to analyzing the nature of EEC phenomena observed in other areas of chemistry.


Assuntos
Desdobramento de Proteína , Proteínas , Entropia , Cinética , Termodinâmica , Proteínas/química , Desnaturação Proteica
3.
J Chem Phys ; 155(12): 124308, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598590

RESUMO

Photodissociation of the van der Waals complex Ar-I2 after excitation into the Rydberg states of I2 has been investigated with velocity map imaging of photofragments. Formation of the translationally hot ions of argon Ar+ with three modes in kinetic energy distribution has been revealed. The measured dependence of the kinetic energy of Ar+ on the pumping photon energy indicates the appearance of Ar+ from three channels of the photodissociation of the linear intermediate Ar+-I-I- containing chemically bound argon. These channels are (1) dissociation into Ar++ I2 -; (2) three-body dissociation into (Ar+)* + I* + I-, with (Ar+)* and I* being the 2P1/2 states of the species; and (3) two-body electron photodetachment, giving rise to Ar+ + I2 + e. Three indicated channels are similar to those established for the photodissociation of trihalide anions. This similarity confirms the conclusion on the formation of the Ar+-I-I- intermediate, which is isoelectronic to the trihalide anion Cl-I-I-. The mechanism of the Ar+-I-I- formation involves two-photon excitation of the complex Ar-I2 into the Rydberg state of I2 converted into the ion-pair state and further electron transfer from Ar to I+ of the ion-pair state. The self-assembling of the structure making the formation of the Ar+-I-I- intermediate energetically accessible is confirmed by modeling the dynamics in the excited linear complex Ar-I2. Photoexcitation of the van der Waals complexes of noble gases with halogens into the ion-pair states of halogen is supposed to be a promising approach for generating the new chemical compounds of noble gas atoms.

4.
J Phys Chem A ; 124(41): 8469-8477, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32986424

RESUMO

The formation of singlet oxygen 1O2 provided by the photoexcitation of the encounter complexes of isoprene with oxygen (C5H8-O2) in the gas phase within the spectral region 253.5-355 nm has been observed at the elevated pressure of oxygen. Singlet oxygen has been detected with its NIR luminescence centered near 1.27 µm. The photogeneration of 1O2 is found to be a one-photon process. In the UV-C region (253-278 nm) the quantum yield of 1O2 is measured. This yield of 1O2 is governed mainly by photoexcitation of O2 molecules to the Herzberg III (3Δu) state via enhanced absorption by C5H8-O2 collision complexes. So excited triplet O2 gives rise to singlet oxygen because of triplet-triplet annihilation in the collisions with unexcited O2 molecules. In the UV-B (308 nm) region the appearance of 1O2 is attributed to the excitation of a double spin-flip (DSF) transition in complex C5H8-O2. In the UV-A region (355 nm) besides DSF the O2-assisted T1 ← S0 excitation of isoprene to the triplet state takes place, which is a sensitizer of 1O2 formation. The contribution of the encounter complexes C5H8-O2 to the production of singlet oxygen and to the lifetime of isoprene in the Earth's troposphere are estimated.

5.
J Phys Chem A ; 123(36): 7751-7757, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31414805

RESUMO

UV photodissociation of tungsten hexacarbonyl W(CO)6 has been studied in the molecular beam conditions using time-of-flight mass spectrometry and velocity map imaging. Irradiation of W(CO)6 by pulsed laser radiation at 266 nm results in the appearance of singly and doubly charged tungsten ions. The isotope composition of these ions deviates essentially from natural abundance with deviation being pulse energy-dependent. The velocity map images of the tungsten ions indicate proceeding of several, more than two, parallel channels (sequences of the one-photon processes) of photodissociation, giving rise to tungsten atoms. Isotope effect is assigned to appear in a one-photon bound-bound transition in W(CO) intermediate followed by its predissociation. In the model suggested, the final state of this transition is a vibronic state with excited vibrational mode of W-C stretching vibration. This vibrational excitation is responsible for isotopic shift in the location of the final state. The suggested model fits the observed isotopic composition quantitatively.

6.
J Phys Chem A ; 122(4): 1064-1070, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29334730

RESUMO

The UV-photodissociation at 266 nm of a widely used TiO2 precursor, titanium tetraisopropoxide (Ti(OiPr)4, TTIP), was studied under molecular-beam conditions. Using the MS-TOF technique, atomic titanium and titanium(II) oxide (TiO) were detected among the most abundant photofragments. Experimental results were rationalized with the aid of quantum chemical calculations (DLPNO-CCSD(T) and DFT). Contrary to the existing data in the literature, the new four-centered acetone-elimination reaction was found to be the primary decomposition process of TTIP. According to computational results, the effective activation barrier of this channel was ∼49 kcal/mol, which was ∼13 kcal/mol lower than that of the competing propylene elimination. The former process, followed by the dissociative loss of an H atom, was a dominating channel of TTIP unimolecular decay. The sequential loss of isopropoxy moieties via these two-step processes was supposed to produce the experimentally observed titanium atoms. In turn, the combination of these reactions with propylene elimination can lead to another detected species, TiO. These results indicate that the existing mechanisms of TTIP thermal and photoinitiated decomposition in the chemical-vapor deposition (CVD) of titanium dioxide should be reconsidered.

7.
J Chem Phys ; 147(23): 234304, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29272931

RESUMO

The photodissociation of van der Waals complexes of iodine X-I2 (X = I2, C2H4) excited via Charge-Transfer (CT) band has been studied with the velocity map imaging technique. Photodissociation of both complexes gives rise to translationally "hot" molecular iodine I2 via channels differing by kinetic energy and angular distribution of the recoil directions. These measured characteristics together with the analysis of the model potential energy surface for these complexes allow us to infer the back-electron-transfer (BET) in the CT state to be a source of observed photodissociation channels and to make conclusions on the location of conical intersections where the BET process takes place. The BET process is concluded to provide an I2 molecule in the electronic ground state with moderate vibrational excitation as well as X molecule in the electronic excited state. In the case of X = I2, the BET process converts anion I2- of the CT state into the neutral I2 in the repulsive excited electronic state which then dissociates promptly giving rise to a pair of I atoms in the fine states 2P1/2. In the case of C2H4-I2, the C2H4 molecules appear in the triplet T1 electronic state. Conical intersection for corresponding BET process becomes energetically accessible after partial twisting of C2H4+ frame in the excited CT state of complex. The C2H4(T)-I2 complex gives rise to triplet ethylene as well as singlet ethylene via the T-S conversion.

8.
Phys Chem Chem Phys ; 17(43): 28565-73, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26278993

RESUMO

The channel of singlet oxygen O2((1)Δg) photogeneration from van der Waals complexes of oxygen X-O2 has been investigated to discriminate between two possible mechanisms based on charge-transfer (CT) or double spin-flip (DSF) transitions. The results obtained in this work for complexes with X = ethylene C2H4, 1,3-butadiene C4H6, deuterated methyl iodide CD3I, benzene C6H6 and water H2O and for those investigated previously indicate the DSF mechanism as a source of singlet oxygen. The formation of O2((1)Δg) is observed only when the energy of exciting quantum is sufficient for DSF transition. Universally detected low vibrational excitation of O2((1)Δg) arising in the photodissociation of van der Waals complexes X-O2 indicates the DSF mechanism as its source. For complex of ethylene C2H4-O2ab initio calculations of vertical energy ΔE(vert) for DSF and CT transitions have been carried out. The positive results of singlet oxygen formation from C2H4-O2 can be explained by the DSF but not by the CT mechanism.

9.
J Chem Phys ; 140(12): 124311, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24697445

RESUMO

Velocity map imaging of the photofragments arising from two-photon photoexcitation of molecular iodine in the energy range 73 500-74 500 cm(-1) covering the bands of high-lying gerade Rydberg states [(2)Π1/2]c6d;0g (+) and [(2)Π1/2]c6d;2g has been applied. The ion signal was dominated by the atomic fragment ion I(+). Up to 5 dissociation channels yielding I(+) ions with different kinetic energies were observed when the I2 molecule was excited within discrete peaks of Rydberg states and their satellites in this region. One of these channels gives rise to images of I(+) and I(-) ions with equal kinetic energy indicating predissociation of I2 via ion-pair states. The contribution of this channel was up to about 50% of the total I(+) signal. The four other channels correspond to predissociation via lower lying Rydberg states giving rise to excited iodine atoms providing I(+) ions by subsequent one-photon ionization by the same laser pulse. The ratio of these channels varied from peak to peak in the spectrum but their total ionic signal was always much higher than the signal of (2 + 1) resonance enhanced multi-photon ionization of I2, which was previously considered to be the origin of ionic signal in this spectral range. The first-tier E0g (+) and D(')2g ion-pair states are concluded to be responsible for predissociation of Rydberg states [(2)Π1/2]c6d;0g (+) and [(2)Π1/2]c6d;2g, respectively. Further predissociation of these ion-pair states via lower lying Rydberg states gives rise to excited I(5s(2)5p(4)6s(1)) atoms responsible for major part of ion signal. The isotropic angular distribution of the photofragment recoil directions observed for all channels indicates that the studied Rydberg states are long-lived compared with the rotational period of the I2 molecule.

10.
J Chem Phys ; 137(5): 054305, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22894346

RESUMO

The speed and angular distribution of O atoms arising from the photofragmentation of C(5)H(8)-O(2), the isoprene-oxygen van der Waals complex, in the wavelength region of 213-277 nm has been studied with the use of a two-color dissociation-probe method and the velocity map imaging technique. Dramatic enhancement in the O atoms photo-generation cross section in comparison with the photodissociation of individual O(2) molecules has been observed. Velocity map images of these "enhanced" O atoms consisted of five channels, different in their kinetic energy, angular distribution, and wavelength dependence. Three channels are deduced to be due to the one-quantum excitation of the C(5)H(8)-O(2) complex into the perturbed Herzberg III state ((3)Δ(u)) of O(2). This excitation results in the prompt dissociation of the complex giving rise to products C(5)H(8)+O+O when the energy of exciting quantum is higher than the complex photodissociation threshold, which is found to be 41740 ± 200 cm(-1) (239.6±1.2 nm). This last threshold corresponds to the photodissociation giving rise to an unexcited isoprene molecule. The second channel, with threshold shifted to the blue by 1480 ± 280 cm(-1), corresponds to dissociation with formation of rovibrationally excited isoprene. A third channel was observed at wavelengths up to 243 nm with excitation below the upper photodissociation threshold. This channel is attributed to dissociation with the formation of a bound O atom C(5)H(8)-O(2) + hv → C(5)H(8)-O(2)((3)Δ(u)) → C(5)H(8)O + O and/or to dissociation of O(2) with borrowing of the lacking energy from incompletely cooled complex internal degrees of freedom C(5)H(8)*-O(2) + hv → C(5)H(8)*-O(2)((3)Δ(u)) → C(5)H(8) + O + O. The kinetic energy of the O atoms arising in two other observed channels corresponds to O atoms produced by photodissociation of molecular oxygen in the excited a (1)Δ(g) and b (1)Σ(g)(+) singlet states as the precursors. This indicates the formation of singlet oxygen O(2)(a (1)Δ(g)) and O(2)(b (1)Σ(g)(+)) after excitation of the C(5)H(8)-O(2) complex. Cooperative excitation of the complex with a simultaneous change of the spin of both partners (1)X-(3)O(2) + hν → (3)X-(1)O(2) → (3)X + (1)O(2) is suggested as a source of singlet oxygen O(2)(a (1)Δ(g)) and O(2)(b (1)Σ(g)(+)). This cooperative excitation is in agreement with little or no vibrational excitation of O(2)(a (1)Δ(g)), produced from the C(5)H(8)-O(2) complex as studied in the current paper as well as from the C(3)H(6)-O(2) and CH(3)I-O(2) complexes reported in our previous paper [Baklanov et al., J. Chem. Phys. 126, 124316 (2007)]. The formation of O(2)(a (1)Δ(g)) from C(5)H(8)-O(2) was observed at λ(pump) = 213-277 nm with the yield going down towards the long wavelength edge of this interval. This spectral profile is interpreted as the red-side wing of the band of a cooperative transition (1)X-(3)O(2) + hν → (3)X(T(2))-(1)O(2)(a (1)Δ(g)) in the C(5)H(8)-O(2) complex.

11.
J Phys Chem A ; 116(25): 6621-9, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22663062

RESUMO

The mechanism and spectral dependence of the quantum yield of singlet oxygen O(2)(a (1)Δ(g)) photogenerated by UV radiation in gaseous oxygen at elevated pressure (32-130 bar) have been experimentally investigated within the 238-285 nm spectral region overlapping the range of the Wulf bands in the absorption spectrum of oxygen. The dominant channel of singlet oxygen generation with measured quantum yield up to about 2 is attributed to the one-quantum absorption by the encounter complexes O(2)-O(2). This absorption gives rise to oxygen in the Herzberg III state O(2)(A' (3)Δ(u)), which is assumed to be responsible for singlet oxygen production in the relaxation process O(2)(A' (3)Δ(u), υ) + O(2)(X (3)Σ(g)(-)) → O(2)({a (1)Δ(g)}, {b (1)Σ(g)(+)}) + O(2)({a (1)Δ(g), υ = 0}, {b (1)Σ(g)(+), υ = 0}) with further collisional relaxation of b to a state. This mechanism is deduced from the analysis of the avoiding crossing locations on the potential energy surface of colliding O(2)-O(2) pair. The observed drop of the O(2)(a (1)Δ(g)) yield near spectral threshold for O(2) dissociation is explained by the competition between above relaxation and reaction giving rise to O(3) + O (O + O + O(2)) supposed in literature. The quantum yield of O(2)(a (1)Δ(g)) formation from encounter complex N(2)-O(2) measured at λ = 266 nm was found to be the same as that for O(2)-O(2).

12.
J Chem Phys ; 133(19): 194306, 2010 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21090861

RESUMO

Van der Waals binding energies for the X-O(2) complexes (X=Xe, CH(3)I, C(3)H(6), C(6)H(12)) are determined by analysis of experimental velocity map imaging data for O((3)P(2)) atoms arising from UV-photodissociation of the complex [A. V. Baklanov et al., J. Chem. Phys. 126, 124316 (2007)]. Several dissociation pathways have been observed, we focus on the channel corresponding to prompt dissociation of X-O(2) into X+2O((3)P) fragments, which is present for complexes of O(2) with all partners X. Our method is based on analysis of the kinetic energy of all three photofragments, where the O atom kinetic energy was directly measured in the experiment and the kinetic energy of the X partner was calculated using momentum conservation, along with the measured angular anisotropy for O atom recoil. We exploit the fact that the clusters are all T-shaped or nearly T-shaped, which we also confirm by ab initio calculations, along with knowledge of the transition dipole governing radiative absorption by the complex. The effect of partitioning the kinetic energy between translation along the X-O(2) and O-O coordinates on the angular anisotropy of the O atom recoil direction is discussed. Van der Waals binding energies of 110±20 cm(-1), 280±20 cm(-1), 135±30 cm(-1), and 585±20 cm(-1) are determined for Xe-O(2), CH(3)I-O(2), C(3)H(6)-O(2), and C(6)H(12)-O(2) clusters, respectively.

13.
J Phys Chem A ; 114(9): 3067-73, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19827807

RESUMO

Photodissociation of the (HI)(2) van der Waals dimers at 248 nm and nearby wavelengths has been studied using time-of-flight mass spectrometry and velocity map imaging. I(2)(+) product ions with a translational temperature of 130 K and "translationally hot" I(+) ions with an average kinetic energy of E(t) = 1.24 +/- 0.03 eV and angular anisotropy beta = 1.92 +/- 0.11 were detected as dimer-specific ionic photofragments. Velocity map images of the I(2)(+) and I(+) species were found to be qualitatively similar to those observed in the case of photoexcitation of the (CH(3)I)(2) dimer (J. Chem. Phys. 2005, 122, 204301). As in the case of the (CH(3)I)(2) dimer, the absence of neutral I(2)-specific features in the ionic species images from (HI)(2) allows us to eliminate neutral molecular I(2) as a precursor of I(+) and I(2)(+). Similar to the case of (CH(3)I)(2), we deduce that the observed I(2)(+) ions are produced in their (2)Pi(3/2,g) ground electronic state as a result of photodissociation of the ionized dimer (HI)(2)(+) + h nu --> I(2)(+) + .... The formation of "translationally hot" I(+) ions is attributed to photodissociation of nascent vibrationally excited I(2)(+) with an average vibrational energy of 1.05 +/- 0.10 eV. This vibrational excitation is explained by the nonequilibrium initial I-I distance in I(2)(+) arising in photodissociation of (HI)(2)(+) after prompt release of the light H atoms. On the basis of our ab initio calculated value for the I-I distance of (3.17 A) in the (HI)(2)(+) precursor dimer, the vibrational excitation of I(2)(+) is expected to be 1.02 eV, which is in quantitative agreement with our experimentally deduced value. The interpretation of our results was supported by ab initio calculations of the structure and energy of neutral and ionized dimers of HI at the MP4(SDTQ)//MP2 level.

14.
J Chem Phys ; 129(21): 214306, 2008 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19063560

RESUMO

Time-resolved dynamics of the photodissociation of molecular oxygen, O(2), via the (3)Sigma(u) (-) ion-pair state have been studied with femtosecond time resolution using a pump-probe scheme in combination with velocity map imaging of the resulting O(+) and O(-) ions. The fourth harmonic of a femtosecond titanium-sapphire (Ti:sapphire) laser (lambda approximately 205 nm) was found to cause three-photon pumping of O(2) to a level at 18.1 eV. The parallel character of the observed O(+) and O(-) images allowed us to conclude that dissociation takes place on the (3)Sigma(u) (-) ion-pair state. The 815 nm fundamental of the Ti:sapphire laser used as probe was found to cause two-photon electron photodetachment starting from the O(2) ion-pair state, giving rise to (O((3)P)+O(+)((4)S)) products. This was revealed by the observed depletion of the yield of the O(-) anion and the appearance of a new O(+) cation signal with a kinetic energy E(transl)(O(+)) dependent on the time delay between the pump and probe lasers. This time-delay dependence of the dissociation dynamics on the ion-pair state has also been simulated, and the experimental and simulated results coincide very well over the experimental delay-time interval from about 130 fs to 20 ps where two- or one-photon photodetachment takes place, corresponding to a change in the R(O(+),O(-)) interatomic distance from 12 to about 900 A. This is one of the first implementations of a depletion scheme in femtosecond pump-probe experiments which could prove to be quite versatile and applicable to many femtosecond time-scale experiments.


Assuntos
Oxigênio/química , Fotólise , Cor , Fótons , Fatores de Tempo
15.
J Chem Phys ; 126(12): 124316, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17411132

RESUMO

The effect of a local environment on the photodissociation of molecular oxygen is investigated in the van der Waals complex X-O(2) (X=CH(3)I, C(3)H(6), C(6)H(12), and Xe). A single laser operating at wavelengths around 226 nm is used for both photodissociation of the van der Waals complex and simultaneous detection of the O((3)P(J),J=2,1,0) atom photoproduct via (2+1) resonance enhanced multiphoton ionization. The kinetic energy distribution (KED) and angular anisotropy of the product O atom recoil in this dissociation are measured using the velocity map imaging technique configured for either full ("crush") or partial ("slice") detection of the three-dimensional O((3)P(J)) atom product Newton sphere. The measured KED and angular anisotropy reveal a distinct difference in the mechanism of O atom generation from an X-O(2) complex compared to a free O(2) molecule. The authors identify two one-photon excitation pathways, the relative importance of which depends on IPx, the ionization potential of the X partner. One pathway, observed for all complexes independent of IPx, involves a direct transition to the perturbed covalent state X-O(2)(A'(3)Delta(u)) with excitation localized on the O(2) subunit. The predominantly perpendicular character of this channel relative to the laser polarization detection, together with data on the structure of the complex, allows us to confirm that X partner induced admixing of an X(+)-O(2) (-) charge transfer (CT) state is the perturbing factor resulting in the well-known enhancement of photoabsorption within the Herzberg continuum of molecular oxygen. The second excitation pathway, observed for X-O(2) complexes with X=CH(3)I and C(3)H(6), involves direct excitation into the (3)(X(+)-O(2) (-)) CT state of the complex. The subsequent photodissociation of this CT state by the same laser pulse gives rise to the superoxide anion O(2) (-), which then photodissociates, providing fast (0.69 eV) O atoms with a parallel image pattern. Products from the photodissociation of singlet oxygen O(2)(b (1)Sigma(g) (+)) are also observed when the CH(3)I-O(2) complex was irradiated. Potential energy surfaces (PES) for the ground and relevant excited states of the X-O(2) complex have been constructed for CH(3)I-O(2) using the results of CASSCF calculations for the ground and CT states of the complex as well as literature data on PES of the subunits. These model potential energy surfaces allowed us to interpret all of the observed O((3)P(J)) atom production channels.

16.
J Chem Phys ; 125(13): 133303, 2006 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-17029456

RESUMO

The formation of neutral I2 by the photodissociation of the methyl iodide dimer, (CH3I)2, excited within the A band at 249.5 nm is evaluated using velocity map imaging. In previous work [J. Chem. Phys. 122, 204301 (2005)], we showed that the formation of I2+ from photodissociation of the methyl iodide dimer takes place via ionic channels (through the formation of (CH3I)2+). It is thus not possible to detect neutral I2 by monitoring I2+. Neutral I2 is detected in this study by monitoring I atoms arising from the photodissociation of I2. Iodine atoms from I2 photodissociation have a characteristic kinetic energy and angular anisotropy, which is registered using velocity map imaging. We use a two-color probe scheme involving the photodissociation of nascent I2 at 499 nm, which gives rise to I atoms that are ionized by (2+1) resonance enhanced multiphoton ionization at 304.67 nm. Our estimate of the yield of nascent I2 is based on the comparison with the signal from I2 at a known concentration. Using molecular beams with a small fraction of CH3I (1% in the expanded mixture) where smaller clusters should prevail, the production of I2 was found to be negligible. An upper estimate for the quantum yield of I2 from (CH3I)2 dimers was found to be less than 0.4%. Experiments with a higher fraction of CH3I (4% in the expanded mixture), which favor the formation of larger clusters, revealed an observable formation of I2, with an estimated translational temperature of about 820 K. We suggest that this observed I2 signal arises from the photodissociation of several CH3I molecules in the larger cluster by the same UV pulse, followed by recombination of two nascent iodine atoms is responsible for neutral I2 production.

17.
J Chem Phys ; 122(20): 204301, 2005 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-15945718

RESUMO

The CH(3)I A-state-assisted photofragmentation of the (CH(3)I)(2) van der Waals dimer at 248 nm and nearby wavelengths has been revisited experimentally using the time-of-flight mass spectrometry with supersonic and effusive molecular beams and the "velocity map imaging" technique. The processes underlying the appearance of two main (CH(3)I)(2) cluster-specific features in the mass spectra, namely, I(2)(+) and translationally "hot" I(+) ions, have been studied. Translationally hot I(+) ions with an average kinetic energy of 0.94+/-0.02 eV appear in the one-quantum photodissociation of vibrationally excited I(2)(+)((2)Pi(32,g)) ions (E(vib)=0.45+/-0.11 eV) via a "parallel" photodissociation process with an anisotropy parameter beta=1.55+/-0.03. Comparison of the images of I(+) arising from the photoexcitation of CH(3)I clusters versus those from neutral I(2) shows that "concerted" photodissociation of the ionized (CH(3)I)(2)(+) dimer appears to be the most likely mechanism for the formation of molecular iodine ion I(2)(+), instead of photoionization of neutral molecular iodine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...