Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 148: 106204, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37883894

RESUMO

Alginate gel scaffolds are biocompatible and biodegradable materials that have been used in a variety of tissue engineering applications. The porosity of alginate gel scaffolds is an important property that affects their performance. However, it is difficult to predict the porosity of alginate gel scaffolds accurately. In this study, a GA-coupled ANN model was developed to predict the porosity of alginate gel scaffolds. The model was trained on a dataset of 107 scaffolds with known porosities. The model was able to achieve a mean absolute error of 0.13, which suggests that it is able to accurately predict the porosity of alginate gel scaffolds. The alginate scaffold was fabricated by a microfluidic technique using a syringe pump and a flow device. The crosslinker solution was poured into the Petri dish to crosslink the polymer to the gel structure. The Archimedes method was used to determine the scaffold's apparent porosity. The artificial neural network has been used to model the porosity of the gel scaffold using the input parameters such as alginate-pluronic viscosity, surface tension, and contact angle etc. The maximum porosity was modelled to be 96.4 % using GA whereas the experimental value for the same was measured to be 92.8 ± 2 %. A 3.7% variation in the porosity was found from modelled value. To the best of our knowledge, this study is the first to develop an integrated ANN-coupled GA model to predict the maximum porosity of the gel scaffold. The result indicates that artificial intelligence has great potential for optimizing the parameters to fabricate the gel scaffold that can be used for tissue engineering applications.


Assuntos
Alginatos , Alicerces Teciduais , Alicerces Teciduais/química , Porosidade , Alginatos/química , Inteligência Artificial , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química
2.
Mater Sci Eng C Mater Biol Appl ; 59: 61-69, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26652349

RESUMO

Hydrogel scaffolds from biopolymers have potential use in the controlled release of drugs, and as 3-D structure for the formation of tissue matrix. This article describes the solute release behavior of alginate and chitosan films with embedded voids of sub-millimeter dimensions. Nitrogen gas was bubbled in a fluidic arrangement to generate bubbles, prior to the crosslinking. The crosslinked gel was dried in a vacuum oven, and subsequently, soaked in Vitamin B-12 solution. The dimensions of the voids immediately after the cross-linking of gel, and also after complete drying were obtained using a digital microscope and scanning electron microscope respectively. The porosity of the gel was measured gravimetrically. The release of Vitamin B-12 in PBS buffer on a shaker was studied. The release experiments were repeated at an elevated temperature of 37°C in the presence of lysozyme. The diffusion coefficient within the gel layer and the mass transfer coefficient at the interface with the bulk-liquid were estimated using a mathematical model. For comparison, the experiment was repeated with a film that does not have any embedded void. The enhancement in diffusion coefficient due to the presence of voids is discussed in this article.


Assuntos
Alginatos/química , Quitosana/química , Membranas Artificiais , Modelos Químicos , Ácido Glucurônico/química , Ácidos Hexurônicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...