Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2839, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990573

RESUMO

A combination of complementary high-energy X-ray diffraction, containerless solidification during electromagnetic levitation and transmission electron microscopy is used to map in situ the phase evolution in a prototype Cu-Zr-Al glass during flash-annealing imposed at a rate ranging from 102 to 103 K s-1 and during cooling from the liquid state. Such a combination of experimental techniques provides hitherto inaccessible insight into the phase-transformation mechanism and its kinetics with high temporal resolution over the entire temperature range of the existence of the supercooled liquid. On flash-annealing, most of the formed phases represent transient (metastable) states - they crystallographically conform to their equilibrium phases but the compositions, revealed by atom probe tomography, are different. It is only the B2 CuZr phase which is represented by its equilibrium composition, and its growth is facilitated by a kinetic mechanism of Al partitioning; Al-rich precipitates of less than 10 nm in a diameter are revealed. In this work, the kinetic and chemical conditions of the high propensity of the glass for the B2 phase formation are formulated, and the multi-technique approach can be applied to map phase transformations in other metallic-glass-forming systems.

2.
J Arthroplasty ; 36(7): 2603-2611.e2, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33812716

RESUMO

BACKGROUND: Column damage is a unique degradation pattern observed in cobalt-chromium-molybdenum (CoCrMo) femoral head taper surfaces that resemble column-like troughs in the proximal-distal direction. We investigate the metallurgical origin of this phenomenon. METHODS: Thirty-two severely damaged CoCrMo femoral head retrievals from 7 different manufacturers were investigated for the presence of column damage and chemical inhomogeneities within the alloy microstructure via metallographic evaluation of samples sectioned off from the femoral heads. RESULTS: Column damage was found to affect 37.5% of the CoCrMo femoral heads in this study. All the column-damaged femoral heads exhibited chemical inhomogeneities within their microstructures, which comprised of regions enriched or depleted in molybdenum and chromium. Column damage appears as a dissolution of the entire surface with preferential corrosion along the molybdenum and chromium depleted regions. CONCLUSION: Molybdenum and chromium depleted zones serve as initiation sites for in vivo corrosion of the taper surface. Through crevice corrosion, the degradation spreads to the adjacent non-compositionally depleted areas of the alloy as well. Future improved alloy and processing recipes are required to ensure no chemical inhomogeneity due to segregation of solute elements are present in CoCrMo femoral heads.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Ligas de Cromo , Corrosão , Prótese de Quadril/efeitos adversos , Humanos , Desenho de Prótese , Falha de Prótese
3.
Small ; 16(39): e2004400, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32885564

RESUMO

The properties of a material can be engineered by manipulating its atomic and chemical architecture. Nanoglasses which have been recently invented and comprise nanosized glassy particles separated by amorphous interfaces, have shown promising properties. A potential way to exploit the structural benefits of nanoglasses and of nanocrystalline materials is to optimize the composition to obtain crystals forming within the glassy particles. Here, a metastable Fe-10 at% Sc nanoglass is synthesized. A complex hierarchical microstructure is evidenced experimentally at the atomic scale. This bulk material comprises grains of a Fe90 Sc10 amorphous matrix separated by an amorphous interfacial network enriched and likely stabilized by hydrogen, and property-enhancing pure-Fe nanocrystals self-assembled within the matrix. This composite structure leads a yield strength above 2.5 GPa with an exceptional quasi-homogeneous plastic flow of more than 60% in compression. This work opens new pathways to design materials with even superior properties.

4.
Adv Mater ; 32(34): e2002619, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32686224

RESUMO

High-entropy alloys (HEAs) and metallic glasses (MGs) are two material classes based on the massive mixing of multiple-principal elements. HEAs are single or multiphase crystalline solid solutions with high ductility. MGs with amorphous structure have superior strength but usually poor ductility. Here, the stacking fault energy in the high-entropy nanotwinned crystalline phase and the glass-forming-ability in the MG phase of the same material are controlled, realizing a novel nanocomposite with near theoretical yield strength (G/24, where G is the shear modulus of a material) and homogeneous plastic strain above 45% in compression. The mutually compatible flow behavior of the MG phase and the dislocation flux in the crystals enable homogeneous plastic co-deformation of the two regions. This crystal-glass high-entropy nanocomposite design concept provides a new approach to developing advanced materials with an outstanding combination of strength and ductility.

5.
Adv Sci (Weinh) ; 7(5): 1903008, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32154080

RESUMO

Millions worldwide suffer from arthritis of the hips, and total hip replacement is a clinically successful treatment for end-stage arthritis patients. Typical hip implants incorporate a cobalt alloy (Co-Cr-Mo) femoral head fixed on a titanium alloy (Ti-6Al-4V) femoral stem via a Morse taper junction. However, fretting and corrosion at this junction can cause release of wear particles and metal ions from the metallic implant, leading to local and systemic toxicity in patients. This study is a multiscale structural-chemical investigation, ranging from the micrometer down to the atomic scale, of the underlying mechanisms leading to metal ion release from such taper junctions. Correlative transmission electron microscopy and atom probe tomography reveals microstructural and compositional alterations in the subsurface of the titanium alloy subjected to in vitro gross-slip fretting against the cobalt alloy. Even though the cobalt alloy is comparatively more wear-resistant, changes in the titanium alloy promote tribocorrosion and subsequent degradation of the cobalt alloy. These observations regarding the concurrent occurrence of electrochemical and tribological phenomena are vital to further improve the design and performance of taper junctions in similar environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA