Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 3(Pt 6): 289-95, 1996 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16702694

RESUMO

A paraboloidally tapered glass monocapillary was used to focus an 8 keV monochromated synchrotron bending-magnet X-ray beam into a 40 (+/-5) mum focal spot located 45 (+/-5) mm from the exit of the capillary. This focal spot had a measured intensity gain of 120 (+/-10) times the intensity present in an equivalent cross section of the unfocused beam from the monochromator. This focused beam was used to obtain oscillation diffraction patterns on image plates from a hen egg-white lysozyme protein crystal in two distinct geometries: one with the specimen crystal at the capillary exit and the other with the crystal at the beam focus. In the first geometry, focused Bragg reflections were observed at the focal plane. In the second geometry, diverging Bragg reflections of high intensity from a small crystal volume were observed. Image-plate diffraction patterns for these two geometries were compared with exposures with equivalent integrated diffracted intensities obtained using a 100 x 100 mum unfocused X-ray beam with the same crystal. The use of the focused beam resulted in a reduction in the exposure time required to produce equivalent patterns by a factor of between 70 and 100.

2.
J Synchrotron Radiat ; 2(Pt 6): 296-9, 1995 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16714833

RESUMO

The first observation of a true geometrical focus of X-rays well beyond the exit of a paraboloidally tapered glass monocapillary is reported. An intensity gain of 250 +/- 20 into a 6 x 9 mum pinhole for 8 keV X-rays and transmission efficiencies of more than 90% below 20 keV were observed.

3.
Appl Opt ; 34(31): 7263-72, 1995 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21060594

RESUMO

The optics of x-ray concentration by tapered glass capillaries is analyzed in terms of a phase-space construction describing their transmission efficiency. The parameters defining the intensity gain are given in terms of parameters describing the x-ray source used, the capillary taper profile, and glass characteristics. We introduce some key concepts in understanding these devices: the extreme ray and a phase-space description of sources and optics. They are used to develop an analytical formulation for the optimum gain characteristics of generalized tapers for use with synchrotrons and other low-divergence sources. This general solution is solved further for the case of conical taper profile. The predictions of this theory are compared with the results of three-dimensional, ray-tracing simulations of x-ray concentration efficiency for conical and paraboloidal tapers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA