Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431014

RESUMO

In men, prostate cancer (PC) is the most frequently diagnosed cancer, causing an estimated 375,000 deaths globally. Currently, existing therapies for the treatment of PC, notably metastatic cases, have limited efficacy due to drug resistance and problematic adverse effects. Therefore, it is imperative to discover and develop novel drugs for treating PC that are efficacious and do not produce intolerable adverse or toxic effects. Condensed quinolines are naturally occurring anticancer compounds. In this study, we determined the in vitro efficacy of IND-2 (4-chloro-2-methylpyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinolone) in the PC lines, PC-3 and DU-145. IND-2 significantly inhibited the proliferation of PC-3 and DU-145, with IC50 values of 3 µM and 3.5 µM, respectively. The incubation of PC-3 cells with 5 and 10 µM of IND-2 caused the loss of the mitochondrial membrane potential in PC-3 cells. Furthermore, IND-2, at 5 µM, increased the expression of cleaved caspase-3, cleaved caspase-7 and cleaved poly (ADP-ribose) polymerase (PARP). The incubation of PC-3 cells with 5 µM of IND-2 significantly decreased the expression of the apoptotic protein, B-cell lymphoma 2 (Bcl-2). Furthermore, 5 and 10 µM of IND-2 produced morphological changes in PC-3 cells characteristic of apoptosis. Interestingly, IND-2 (2.5, 5 and 10 µM) also induced mitotic catastrophe in PC-3 cells, characterized by the accumulation of multinuclei. The incubation of DU-145 cells with 1.25 and 5 µM of IND-2 significantly increased the levels of reactive oxygen species (ROS). Finally, IND-2, at 10 µM, inhibited the catalytic activity of topoisomerase IIα. Overall, our findings suggest that IND-2 could be a potential lead compound for the development of more efficacious compounds for the treatment of PC.

2.
Cancer Rep (Hoboken) ; 5(11): e1720, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36195576

RESUMO

Biologicals have become an integral part of cancer treatment both as therapeutic agents and as supportive care agents. It is important to know that biologics are large, complex molecular entities requiring extensive immunogenicity testing and pharmacovigilance strategies to ensure no immune response is evoked in the body. Oncology's pharmacological market is dominated by biologics; however, their high development and manufacturing costs are burdensome to health care systems. Biologics being the most expensive prescription drugs on the market limit the accessibility for necessary treatment in the case of many patients. As biologics patents expire, the development of biosimilars is underway in an effort to lower costs and enable patients to access new cancer therapies. Regulatory guidelines for biosimilars have now been established and are constantly being revised to address any issues, facilitating their robust development. Moreover, many scientific societies offer guidance to help stakeholders better understand current regulations and biosimilar's safety. Despite the potential cost benefits, lack of knowledge about biosimilars, and the possibility of immunogenicity have created an uncertain environment for healthcare professionals and patients. In this review, we provide an overview of relevant legislation and regulations, pharmacoeconomics, and stakeholder perceptions regarding biosimilars. The article also describes biosimilars in development, as well as the ones currently available on the market.


Assuntos
Antineoplásicos , Medicamentos Biossimilares , Humanos , Medicamentos Biossimilares/uso terapêutico , Antineoplásicos/efeitos adversos , Oncologia
3.
Molecules ; 26(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34361570

RESUMO

A novel series of 4-anilinoquinazoline analogues, DW (1-10), were evaluated for anticancer efficacy in human breast cancer (BT-20) and human colorectal cancer (CRC) cell lines (HCT116, HT29, and SW620). The compound, DW-8, had the highest anticancer efficacy and selectivity in the colorectal cancer cell lines, HCT116, HT29, and SW620, with IC50 values of 8.50 ± 2.53 µM, 5.80 ± 0.92 µM, and 6.15 ± 0.37 µM, respectively, compared to the non-cancerous colon cell line, CRL1459, with an IC50 of 14.05 ± 0.37 µM. The selectivity index of DW-8 was >2-fold in colon cancer cells incubated with vehicle. We further determined the mechanisms of cell death induced by DW-8 in SW620 CRC cancer cells. DW-8 (10 and 30 µM) induced apoptosis by (1) producing cell cycle arrest at the G2 phase; (2) activating the intrinsic apoptotic pathway, as indicated by the activation of caspase-9 and the executioner caspases-3 and 7; (3) nuclear fragmentation and (4) increasing the levels of reactive oxygen species (ROS). Overall, our results suggest that DW-8 may represent a suitable lead for developing novel compounds to treat CRC.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Células HT29 , Humanos
4.
Adv Protein Chem Struct Biol ; 126: 91-122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34090621

RESUMO

Apoptosis, or programmed cell death, is a form of regulated cell death (RCD) that is essential for organogenesis and homeostatic maintenance of normal cell populations. Apoptotic stimuli activate the intrinsic and/or extrinsic pathways to induce cell death due to perturbations in the intracellular and extracellular microenvironments, respectively. In patients with cancer, the induction of apoptosis by anticancer drugs and radiation can produce cancer cell death. However, tumor cells can adapt and become refractory to apoptosis-inducing therapies, resulting in the development of clinical resistance to apoptosis. Drug resistance facilitates the development of aggressive primary tumors that eventually metastasize, leading to therapy failure and mortality. To overcome the resistance to apoptosis to neoadjuvant chemotherapy or targeted therapy, alternative targets of RCD can be induced in apoptosis-resistant cancer cells. Alternatively, cell death can be independent of apoptosis and this strategy could be utilized to develop novel anti-cancer therapies. This chapter discusses approaches that could be employed to overcome clinical resistance to apoptosis in cancer cells.


Assuntos
Apoptose/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Terapia Neoadjuvante , Neoplasias , Animais , Humanos , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia
5.
J Immunol ; 206(7): 1443-1453, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33658296

RESUMO

Insulin receptor (IR) expression on the T cell surface can indicate an activated state; however, the IR is also chemotactic, enabling T cells with high IR expression to physically move toward insulin. In humans with type 1 diabetes (T1D) and the NOD mouse model, a T cell-mediated autoimmune destruction of insulin-producing pancreatic ß cells occurs. In previous work, when purified IR+ and IR- T cells were sorted from diabetic NOD mice and transferred into irradiated nondiabetic NOD mice, only those that received IR+ T cells developed insulitis and diabetes. In this study, peripheral blood samples from individuals with T1D (new onset to 14 y of duration), relatives at high-risk for T1D, defined by positivity for islet autoantibodies, and healthy controls were examined for frequency of IR+ T cells. High-risk individuals had significantly higher numbers of IR+ T cells as compared with those with T1D (p < 0.01) and controls (p < 0.001); however, the percentage of IR+ T cells in circulation did not differ significantly between T1D and control subjects. With the hypothesis that IR+ T cells traffic to the pancreas in T1D, we developed a (to our knowledge) novel mouse model exhibiting a FLAG-tagged mouse IR on T cells on the C57BL/6 background, which is not susceptible to developing T1D. Interestingly, these C57BL/6-CD3FLAGmIR/mfm mice showed evidence of increased IR+ T cell trafficking into the islets compared with C57BL/6 controls (p < 0.001). This transgenic animal model provides a (to our knowledge) novel platform for investigating the influence of IR expression on T cell trafficking and the development of insulitis.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/patologia , Pâncreas/imunologia , Receptor de Insulina/metabolismo , Linfócitos T/imunologia , Adolescente , Adulto , Animais , Movimento Celular , Criança , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...