Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36840216

RESUMO

The effects of heating (40 °C, 1 and 2 h) in dark and light conditions on the photosynthetic activity (photosynthesis rate and photosystem II activity), content of photosynthetic pigments, activity of antioxidant enzymes, content of thiobarbituric acid reactive substances (TBARs), and expression of a number of key genes of antioxidant enzymes and photosynthetic proteins were studied. It was shown that, in darkness, heating reduced CO2 gas exchange, photosystem II activity, and the content of photosynthetic pigments to a greater extent in the phyB mutant than in the wild type (WT). The content of TBARs increased only in the phyB mutant, which is apparently associated with a sharp increase in the total peroxidase activity in WT and its decrease in the phyB mutant, which is consistent with a noticeable decrease in photosynthetic activity and the content of photosynthetic pigments in the mutant. No differences were indicated in all heated samples under light. It is assumed that the resistance of the photosynthetic apparatus to a short-term elevated temperature depends on the content of PHYB active form and is probably determined by the effect of phytochrome on the content of low-molecular weight antioxidants and the activity of antioxidant enzymes.

2.
Plant Physiol Biochem ; 167: 153-162, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34358729

RESUMO

The impacts of high-intensity light (HIL) (4 h) and UV-B radiation (1 h) on the photosynthetic activity, content of photosynthetic and UV-absorbing pigments (UAPs), activity of antioxidant enzymes (ascorbate peroxidase (APX) and guaiacol-dependent peroxidase (GPX)), content of thiobarbituric acid reactive substances (TBARs), expression of some light-regulated genes in 25-day-old wild type (WT) and the cryptochrome 1 (Cry1) hy4 mutant of A. thaliana Col-0 plants grown under blue light (BL) were studied. HIL and UV-B treatments led to decreases in the photosynthetic rate (Pn), photochemical activity of PSII (FV/FM) and PSII performance index (PIABS) of WT and mutant plants grown under high-intensity BL (HBL) and moderate intensity BL (MBL). However, in HBL plants, the decrease in the photosynthetic activity in hy4 plants was significantly greater than that in WT plants. In addition, hy4 HBL plants demonstrated lowered UAP and carotenoid contents as well as lower activity of APX and GPX enzymes. The difference in the decline in the photosynthetic activity of WT and hy4 plants grown at MBL in response to HIL was nonsignificant, while that in response to UV-B was small. We assume that the deficiency in cryptochrome 1 under HIL irradiation disrupts the interaction between HY5 and HFR1 transcription factors and photoreceptors, which affects the transcription of light-induced genes, such as CAB1, PSY and PAL1 linked to carotenoid and flavonoid biosynthesis. It was concluded that PA stress resistance in WT and hy4 plants depends on the light intensity and reduced stress resistance of hy4 at HBL, is likely linked to low UAP and carotenoid contents as well as lowered APX and GPX enzyme activities in hy4 mutants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascorbato Peroxidases , Peroxidase , Fotossíntese , Antioxidantes , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ascorbato Peroxidases/metabolismo , Regulação da Expressão Gênica de Plantas , Peroxidase/genética , Peroxidase/metabolismo , Espécies Reativas de Oxigênio , Raios Ultravioleta
3.
J Photochem Photobiol B ; 210: 111976, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32717456

RESUMO

The effects of high-intensity light (HIL) on the activity of photosystem II (PSII) and photosynthesis in wild-type (WT) and single (phyB2, phyB1, phyA and cry1), double (phyB1B2, phyAB2 and phyAB1) and triple (phyAB1B2 and cry1phyAB1) mutants of Solanum lycopersicum were studied. In addition, changes in the activity of the antioxidant enzymes ascorbate peroxidase, glutathione reductase and guaiacol peroxidase as well as the photosynthetic pigment and anthocyanin contents in the leaves of phyB2 and cry1phAB1 mutants under HIL were examined. When plants were irradiated with HIL (2 h), the PSII resistance of the cry1phyAB1 mutant was the lowest, while the resistance of WT and single mutants excluding cry1 was the highest. The effect of HIL on PSII activity in all double mutants and the phyAB1B2 mutant was intermediate between the effects on the WT and the cry1phyAB1 mutant. The intensity of oxidative processes in the cry1phyAB1 mutant was higher than that in WT and phyB2, but in cry1phyAB1, the activity of antioxidant enzymes and the anthocyanin content were lower. The low resistance of the cry1phyAB1 mutant to HIL may be due to the low antioxidant activity of key enzymes and the reduced pigment content, which are consistent with the reduced expression of CHS and sAPX genes in the cry1phyAB1 mutant.


Assuntos
Criptocromos/genética , Luz , Fitocromo A/genética , Fitocromo B/genética , Solanum lycopersicum/efeitos da radiação , Antocianinas/química , Antocianinas/metabolismo , Ascorbato Peroxidases/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Criptocromos/deficiência , Glutationa Redutase/metabolismo , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Fotossíntese/efeitos da radiação , Fitocromo A/deficiência , Fitocromo B/deficiência , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância a Radiação
4.
J Plant Physiol ; 219: 37-44, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28988150

RESUMO

The ultrastructure of mesophyll cells was studied in leaves of the Triticum aestivum L. cv. "Trizo" seedlings after two weeks of growth on soil contaminated by Pb and/or Se. The soil treatments: control; (Pb1) 50mgkg-1; (Pb2) 100mgkg-1; (Se1) 0.4mgkg-1; (Se2) 0.8mgkg-1; (Pb1+Se1); (Pb1+Se2); (P2+Se1); and (Pb2+Se2) were used. Light and other conditions were optimal for plant growth. The (Se1)-plants showed enhanced growth and biomass production; (Pb1+Se1)-plants did not lag behind the controls, though O2 evolution decreased; chlorophyll content did not differ statistically in these treatments. Other treatments led to statistically significant growth suppression, chlorophyll content reduction, inhibition of photosynthesis, stress development tested by H2O2 and leaf etiolation at the end of 14-days experiment. The tops of etiolated leaves remained green, while the main leaf parts were visually white. Plastids in mesophyll cells of etiolated parts of leaves were mainly represented by etioplasts and an insignificant amount of degraded chloroplasts. Other cellular organelles remained intact in most mesophyll cells of the plants, except (Pb2+Se2)-plants. Ruptured tonoplast and etioplast envelope, swelled cytoplasm and mitochondria, and electron transparent matrix of gialoplasm were observed in the mesophyll cells at (Pb2+Se2)-treatment, that caused maximal inhibition of plant growth. The results indicate that Pb and Se effects on growth of wheat leaves are likely to target meristem in which the development of proplastids to chloroplasts under the light is determined by chlorophyll biosynthesis. Antagonistic effect of low concentration of Se and Pb in combination may retard etiolation process.


Assuntos
Clorofila/metabolismo , Estiolamento , Peróxido de Hidrogênio/metabolismo , Chumbo/metabolismo , Oxigênio/metabolismo , Selênio/metabolismo , Triticum/crescimento & desenvolvimento , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/ultraestrutura , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Estresse Fisiológico , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/ultraestrutura
5.
Physiol Mol Biol Plants ; 15(2): 115-22, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23572920

RESUMO

The extent of damage caused to the photosynthetic machinery of 10-d-old wheat seedlings by short-term exposure to mild heat, their capacity to recover from it and the possible roles of H2O2, SOD, catalase and ascorbate peroxidase on the recovery process were investigated. Seedlings were subjected to heat treatments at 40/42/44 °C for 20 min in the dark and allowed to grow for 72 h in light of different irradiances (40-800 µE m(-2) s(-1)) at 20 °C for recovery from heat induced damage. Complete or partial recovery of photosynthetic activities was observed in the seedlings treated at 40 °C and 42 °C, but not at 44 °C. Our data suggest that the balance between (pro)oxidant and antioxidant levels poised by heat stress subsequent light is the crucial factor for the extent of recovery from heat induced damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...