Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1187956, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362439

RESUMO

Background: Populations of in silico electrophysiological models of human cardiomyocytes represent natural variability in cell activity and are thoroughly calibrated and validated using experimental data from the human heart. The models have been shown to predict the effects of drugs and their pro-arrhythmic risks. However, excitation and contraction are known to be tightly coupled in the myocardium, with mechanical loads and stretching affecting both mechanics and excitation through mechanisms of mechano-calcium-electrical feedback. However, these couplings are not currently a focus of populations of cell models. Aim: We investigated the role of cardiomyocyte mechanical activity under different mechanical conditions in the generation, calibration, and validation of a population of electro-mechanical models of human cardiomyocytes. Methods: To generate a population, we assumed 11 input parameters of ionic currents and calcium dynamics in our recently developed TP + M model as varying within a wide range. A History matching algorithm was used to generate a non-implausible parameter space by calibrating the action potential and calcium transient biomarkers against experimental data and rejecting models with excitation abnormalities. The population was further calibrated using experimental data on human myocardial force characteristics and mechanical tests involving variations in preload and afterload. Models that passed the mechanical tests were validated with additional experimental data, including the effects of drugs with high or low pro-arrhythmic risk. Results: More than 10% of the models calibrated on electrophysiological data failed mechanical tests and were rejected from the population due to excitation abnormalities at reduced preload or afterload for cell contraction. The final population of accepted models yielded action potential, calcium transient, and force/shortening outputs consistent with experimental data. In agreement with experimental and clinical data, the models demonstrated a high frequency of excitation abnormalities in simulations of Dofetilide action on the ionic currents, in contrast to Verapamil. However, Verapamil showed a high frequency of failed contractions at high concentrations. Conclusion: Our results highlight the importance of considering mechanoelectric coupling in silico cardiomyocyte models. Mechanical tests allow a more thorough assessment of the effects of interventions on cardiac function, including drug testing.

2.
Front Physiol ; 14: 1123609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969594

RESUMO

Although fibroblasts are about 5-10 times smaller than cardiomyocytes, their number in the ventricle is about twice that of cardiomyocytes. The high density of fibroblasts in myocardial tissue leads to a noticeable effect of their electromechanical interaction with cardiomyocytes on the electrical and mechanical functions of the latter. Our work focuses on the analysis of the mechanisms of spontaneous electrical and mechanical activity of the fibroblast-coupled cardiomyocyte during its calcium overload, which occurs in a variety of pathologies, including acute ischemia. For this study, we developed a mathematical model of the electromechanical interaction between cardiomyocyte and fibroblasts and used it to simulate the impact of overloading cardiomyocytes. In contrast to modeling only the electrical interaction between cardiomyocyte and fibroblasts, the following new features emerge in simulations with the model that accounts for both electrical and mechanical coupling and mechano-electrical feedback loops in the interacting cells. First, the activity of mechanosensitive ion channels in the coupled fibroblasts depolarizes their resting potential. Second, this additional depolarization increases the resting potential of the coupled myocyte, thus augmenting its susceptibility to triggered activity. The triggered activity associated with the cardiomyocyte calcium overload manifests itself in the model either as early afterdepolarizations or as extrasystoles, i.e., extra action potentials and extra contractions. Analysis of the model simulations showed that mechanics contribute significantly to the proarrhythmic effects in the cardiomyocyte overloaded with calcium and coupled with fibroblasts, and that mechano-electrical feedback loops in both the cardiomyocyte and fibroblasts play a key role in this phenomenon.

3.
Prog Biophys Mol Biol ; 159: 46-57, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846154

RESUMO

Cardiac fibroblasts are interspersed within mammalian cardiac tissue. Fibroblasts are mechanically passive; however, they may communicate electrically with cardiomyocytes via gap junctions and thus affect the electrical and mechanical activity of myocytes. Several in-silico studies at both cellular (0D) and ventricular (3D) levels analysed the effects of fibroblasts on the myocardial electrical function. However, none of them addressed possible effects of fibroblast-myocyte electrical coupling to cardiomyocyte mechanical activity. In this paper, we propose a mathematical model for studying both electrical and mechanical responses of the human cardiomyocyte to its electrotonic interaction with cardiac fibroblasts. Our simulations have revealed that electrotonic interaction with fibroblasts affects not only the mechanical activity of the cardiomyocyte, comprising either moderate or significant reduction of contractility, but also the mechano-calcium and mechano-electric feedback loops, and all these effects are enhanced as the number of coupled fibroblasts is increased. Obtained results suggest that moderate values of the myocyte-fibroblast gap junction conductance (less than 1 nS) can be attributed to physiological conditions, contrasting to the higher values (2 nS and higher) proper rather for pathological situations (e.g. for infarct and/or border zones), since all mechanical indexes falls down dramatically in the case of such high conductance.


Assuntos
Fenômenos Biomecânicos/fisiologia , Fibroblastos/metabolismo , Junções Comunicantes/metabolismo , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Comunicação Celular/fisiologia , Eletrofisiologia , Canais Iônicos/metabolismo , Modelos Teóricos , Miocárdio/citologia , Potássio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Sódio/metabolismo
4.
J Physiol Sci ; 70(1): 12, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32070290

RESUMO

Experiments on animal hearts (rat, rabbit, guinea pig, etc.) have demonstrated that mechano-calcium feedback (MCF) and mechano-electric feedback (MEF) are very important for myocardial self-regulation because they adjust the cardiomyocyte contractile function to various mechanical loads and to mechanical interactions between heterogeneous myocardial segments in the ventricle walls. In in vitro experiments on these animals, MCF and MEF manifested themselves in several basic classical phenomena (e.g., load dependence, length dependence of isometric twitches, etc.), and in the respective responses of calcium transients and action potentials. However, it is extremely difficult to study simultaneously the electrical, calcium, and mechanical activities of the human heart muscle in vitro. Mathematical modeling is a useful tool for exploring these phenomena. We have developed a novel model to describe electromechanical coupling and mechano-electric feedbacks in the human cardiomyocyte. It combines the 'ten Tusscher-Panfilov' electrophysiological model of the human cardiomyocyte with our module of myocardium mechanical activity taken from the 'Ekaterinburg-Oxford' model and adjusted to human data. Using it, we simulated isometric and afterloaded twitches and effects of MCF and MEF on excitation-contraction coupling. MCF and MEF were found to affect significantly the duration of the calcium transient and action potential in the human cardiomyocyte model in response to both smaller afterloads as compared to bigger ones and various mechanical interventions applied during isometric and afterloaded twitches.


Assuntos
Cálcio/farmacologia , Simulação por Computador , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Acoplamento Excitação-Contração , Humanos , Potenciais da Membrana , Contração Miocárdica/fisiologia
5.
J Physiol Sci ; 68(4): 387-413, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28573594

RESUMO

Myocardial heterogeneity is an attribute of the normal heart. We have developed integrative models of cardiomyocytes from the subendocardial (ENDO) and subepicardial (EPI) ventricular regions that take into account experimental data on specific regional features of intracellular electromechanical coupling in the guinea pig heart. The models adequately simulate experimental data on the differences in the action potential and contraction between the ENDO and EPI cells. The modeling results predict that heterogeneity in the parameters of calcium handling and myofilament mechanics in isolated ENDO and EPI cardiomyocytes are essential to produce the differences in Ca2+ transients and contraction profiles via cooperative mechanisms of mechano-calcium-electric feedback and may further slightly modulate transmural differences in the electrical properties between the cells. Simulation results predict that ENDO cells have greater sensitivity to changes in the mechanical load than EPI cells. These data are important for understanding the behavior of cardiomyocytes in the intact heart.


Assuntos
Modelos Cardiovasculares , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Potenciais de Ação/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Cálcio/metabolismo , Cobaias
6.
Comput Biol Med ; 84: 147-155, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28364644

RESUMO

Based on the experimental evidence, we developed a one-dimensional (1D) model of heterogeneous myocardial tissue consisting of in-series connected cardiomyocytes from distant transmural regions using mathematical models of subendocardial and subepicardial cells. The regional deformation patterns produced by our 1D model are consistent with the transmural regional strain patterns obtained experimentally in the normal heart in vivo. The modelling results suggest that the mechanical load may essentially affect the transmural gradients in the electrical and mechanical properties of interacting myocytes within a tissue, thereby regulating global myocardial output.


Assuntos
Fenômenos Biomecânicos/fisiologia , Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Animais , Cães , Cobaias , Coração/fisiologia , Humanos , Miocárdio/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...