Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 5442, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784519

RESUMO

Genome modifications are central components of the continuous arms race between viruses and their hosts. The archaeosine base (G+), which was thought to be found only in archaeal tRNAs, was recently detected in genomic DNA of Enterobacteria phage 9g and was proposed to protect phage DNA from a wide variety of restriction enzymes. In this study, we identify three additional 2'-deoxy-7-deazaguanine modifications, which are all intermediates of the same pathway, in viruses: 2'-deoxy-7-amido-7-deazaguanine (dADG), 2'-deoxy-7-cyano-7-deazaguanine (dPreQ0) and 2'-deoxy-7- aminomethyl-7-deazaguanine (dPreQ1). We identify 180 phages or archaeal viruses that encode at least one of the enzymes of this pathway with an overrepresentation (60%) of viruses potentially infecting pathogenic microbial hosts. Genetic studies with the Escherichia phage CAjan show that DpdA is essential to insert the 7-deazaguanine base in phage genomic DNA and that 2'-deoxy-7-deazaguanine modifications protect phage DNA from host restriction enzymes.


Assuntos
Vírus de Archaea/genética , Bacteriófagos/genética , Enzimas de Restrição do DNA/metabolismo , DNA/metabolismo , Guanina/análogos & derivados , Bacteriófagos/metabolismo , Guanina/metabolismo , Pirimidinonas/metabolismo , Pirróis/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(38): 19126-19135, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31481610

RESUMO

Queuosine (Q) is a complex tRNA modification widespread in eukaryotes and bacteria that contributes to the efficiency and accuracy of protein synthesis. Eukaryotes are not capable of Q synthesis and rely on salvage of the queuine base (q) as a Q precursor. While many bacteria are capable of Q de novo synthesis, salvage of the prokaryotic Q precursors preQ0 and preQ1 also occurs. With the exception of Escherichia coli YhhQ, shown to transport preQ0 and preQ1, the enzymes and transporters involved in Q salvage and recycling have not been well described. We discovered and characterized 2 Q salvage pathways present in many pathogenic and commensal bacteria. The first, found in the intracellular pathogen Chlamydia trachomatis, uses YhhQ and tRNA guanine transglycosylase (TGT) homologs that have changed substrate specificities to directly salvage q, mimicking the eukaryotic pathway. The second, found in bacteria from the gut flora such as Clostridioides difficile, salvages preQ1 from q through an unprecedented reaction catalyzed by a newly defined subgroup of the radical-SAM enzyme family. The source of q can be external through transport by members of the energy-coupling factor (ECF) family or internal through hydrolysis of Q by a dedicated nucleosidase. This work reinforces the concept that hosts and members of their associated microbiota compete for the salvage of Q precursors micronutrients.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/metabolismo , Clostridioides difficile/metabolismo , Infecções por Clostridium/metabolismo , Guanina/análogos & derivados , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/crescimento & desenvolvimento , Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/microbiologia , Guanina/metabolismo , Humanos , Pentosiltransferases/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Transdução de Sinais , Especificidade por Substrato
3.
Nucleic Acids Res ; 47(20): e130, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31504804

RESUMO

Chemical modification of transcripts with 5' caps occurs in all organisms. Here, we report a systems-level mass spectrometry-based technique, CapQuant, for quantitative analysis of an organism's cap epitranscriptome. The method was piloted with 21 canonical caps-m7GpppN, m7GpppNm, GpppN, GpppNm, and m2,2,7GpppG-and 5 'metabolite' caps-NAD, FAD, UDP-Glc, UDP-GlcNAc, and dpCoA. Applying CapQuant to RNA from purified dengue virus, Escherichia coli, yeast, mouse tissues, and human cells, we discovered new cap structures in humans and mice (FAD, UDP-Glc, UDP-GlcNAc, and m7Gpppm6A), cell- and tissue-specific variations in cap methylation, and high proportions of caps lacking 2'-O-methylation (m7Gpppm6A in mammals, m7GpppA in dengue virus). While substantial Dimroth-induced loss of m1A and m1Am arose with specific RNA processing conditions, human lymphoblast cells showed no detectable m1A or m1Am in caps. CapQuant accurately captured the preference for purine nucleotides at eukaryotic transcription start sites and the correlation between metabolite levels and metabolite caps.


Assuntos
Epigênese Genética , Capuzes de RNA/química , Processamento Pós-Transcricional do RNA , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Células Cultivadas , Vírus da Dengue , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Capuzes de RNA/genética , RNA Viral/química , RNA Viral/genética , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...