Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Dev Comp Immunol ; 154: 105138, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38286197

RESUMO

Klebsiella aerogenes (previously known as Enterobacter aerogenes) is a common opportunistic pathogen that infect the respiratory tract and central nervous system. However, how it interferes the host regulatory mechanism has not been previously described. When C. elegans were exposed to K. aerogenes, they exhibited a shorter lifespan compared to those fed with E. coli OP50. The time required for 50 % of L4 hermaphrodite nematodes to die when exposed to K. aerogenes was approximately 9 days, whereas it was about 18 days when fed with E. coli OP50. The interaction with K. aerogenes also affected the physical activity of C. elegans. Parameters like pharyngeal pumping, head thrashing, body bending, and swimming showed a gradual decline during infection. The expression of serotonin-mediated axon regeneration K. aerogenes infection led to increased levels of reactive oxygen species (ROS) in C. elegans compared to E. coli OP50-fed worms. The nematodes activated antioxidant mechanisms, including the expression of SODs, to counteract elevated ROS levels. The interaction with K. aerogenes activated immune regulatory pathways in C. elegans, including the mTOR signaling pathway downstream player SGK-1. Lifespan regulatory pathways, such as pha-4 and pmk-1, were also affected, likely contributing to the nematode ability to survive in a pathogenic environment. K. aerogenes infection has a detrimental impact on the healthspan and lifespan of C. elegans, affecting physical activity, intestinal health, serotonin regulation, ROS levels, and immune responses. These findings provide insights into the complex interactions between K. aerogenes and host organisms.


Assuntos
Proteínas de Caenorhabditis elegans , Enterobacter aerogenes , Animais , Caenorhabditis elegans , Enterobacter aerogenes/metabolismo , Espécies Reativas de Oxigênio , Escherichia coli/fisiologia , Axônios/metabolismo , Serotonina , Regeneração Nervosa , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Imunidade Inata , Ingestão de Alimentos
2.
Mol Omics ; 20(1): 48-63, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37818754

RESUMO

The neural pathways of Caenorhabditis elegans play a crucial role in regulating host immunity and inflammation during pathogenic infections. To understand the major neuro-immune signaling pathways, this study aimed to identify the key regulatory proteins in the host C. elegans during C. sakazakii infection. We used high-throughput label-free quantitative proteomics and identified 69 differentially expressed proteins. KEGG analysis revealed that C. sakazakii elicited host immune signaling cascades primarily including mTOR signaling, axon regeneration, metabolic pathways (let-363 and acox-1.4), calcium signaling (mlck-1), and longevity regulating pathways (ddl-2), respectively. The abrogation in functional loss of mTOR-associated players deciphered that C. sakazakii infection negatively regulated the lifespan of mutant worms (akt-1, let-363 and dlk-1), including physiological aberrations, such as reduced pharyngeal pumping and egg production. Additionally, the candidate pathway proteins were validated by transcriptional profiling of their corresponding genes. Furthermore, immunoblotting showed the downregulation of mTORC2/SGK-1 during the later hours of pathogen exposure. Overall, our findings profoundly provide an understanding of the specificity of proteome imbalance in affecting neuro-immune regulations during C. sakazakii infection.


Assuntos
Proteínas de Caenorhabditis elegans , Cronobacter sakazakii , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cronobacter sakazakii/metabolismo , Axônios/metabolismo , Regeneração Nervosa , Serina-Treonina Quinases TOR/metabolismo
3.
Microb Pathog ; 186: 106505, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38122874

RESUMO

Klebsiella aerogenes, previously known as Enterobacter aerogenes, is a gram-negative bacterium typically present in the gastrointestinal tract. While numerous studies reported the pathogenicity and drug resistance of this bacterium there remains a lack of comprehensive research on K. aerogenes induced alterations in the host cellular mechanisms. In this study, we identify a previously uncharacterized C. elegans miR-61 that defines an evolutionarily conserved miRNA important for development and innate immunity regulation through Notch and TGF-ß signaling pathway. We employed C. elegans wild-type (N2) as well as mutant strains, such as TGF-ß (sma-6) and notch-signaling pathway mutants (adm-4 and mir-61). Our results have demonstrated that the K. aerogenes infected mutants exhibited significantly reduced survival rate, reduced pharyngeal pumping, altered swimming and chemotactic behavior. Moreover, K. aerogenes affects the healthspan by increasing ROS level in the mutants. The gene expression analysis revealed that K. aerogenes upregulated egl-30, tph-1 and sod-1 in adm-4, mir-61 mutants not in sma-6. The in-silico analysis indicated an interaction between mir-61 and col-19, which was confirmed by the upregulation of miR-61 expression and the downregulation of col-19 in sma-6, adm-4, and wild-type strains. These findings suggest that C. elegans activates mir-61 and col-19 regulation through the Notch and TGF-ß signaling pathway against K. aerogenes infection.


Assuntos
Proteínas de Caenorhabditis elegans , Enterobacter aerogenes , MicroRNAs , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Enterobacter aerogenes/genética , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo
4.
Mol Omics ; 19(7): 574-584, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37272185

RESUMO

The interactive network of hosts with pathogenic microbes is still questionable. It has been hypothesized and reported that the host shows altered regulatory mechanisms for different pathogens. Several studies using transcriptomics and proteomics revealed the altered pathways and sequential regulations displayed by the host during bacterial interactions. Still, there is a gap in understanding the triggering molecule at transcriptomic and proteomic levels due to the lack of the knowledge of the interactive metabolites produced during their interactions. In this study, the global metabolomic approach was performed in the nematode model organism Caenorhabditis elegans upon exposure to a Gram-negative bacteria, Salmonella enterica Serovar Typhi, and a Gram-positive bacteria, Staphylococcus aureus, and the whole metabolome was categorized as endo-metabolome (internally produced) and exo-metabolome (externally releasing). The extracted metabolites were subjected to liquid chromatography mass spectrometry (ESI-LC/qToF-MS/MS). In total 5578, 4554 and 4046 endo-metabolites and 4451, 3625 and 1281 exo-metabolites were identified in C. elegans when exposed to E. coli OP50, S. Typhi and S. aureus, respectively. Both the multivariate and univariate analyses were performed. The variation in endo- and exo-metabolome during candidate bacterial interactions was observed. The results indicated that, during S. aureus interaction, the exclusively enriched metabolites were significantly involved in alpha-linoleic acid metabolism. Similarly, the exclusively enriched metabolites during the interaction of S. Typhi were significantly involved in the phosphatidylinositol signalling system. The whole metabolomic profile presented here will build the scope to understand the role of metabolites and the respective pathways in host response during the early period of bacterial infections.


Assuntos
Caenorhabditis elegans , Staphylococcus aureus , Animais , Salmonella typhi , Escherichia coli , Proteômica , Espectrometria de Massas em Tandem
5.
Biosens Bioelectron ; 219: 114849, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327565

RESUMO

Novel methods of sensing and treatment required to elicit potent humoral and cellular immune responses. Here, Streptavidin functionalized α-Fe2O3-Au nanoparticles (STV-Mag) loaded cationic carbomate cholesterol is used as a carrier to release antibacterial thymol drug for Staphylococcus aureus (S. aureus) infected Caenorhabditis elegans (C. elegans). Pertaining to theranostic applications, efficient antimicrobial activity, and non-stimulated drug release and biotin dependent S. aureus growth were studied in-vivo. While STV-Mag was tethered on mercaptobenzoic acid (MBA) molecular cushion for label free streptavidin-biotin electrochemical sensing, the STV-Mag-carbomate cholesterol (STV-Mag-cCHOL liposome) vesicle with loaded drug was tethered on MBA for non-stimulant drug release through specific cholesterol-S. aureus interaction and confirmed electrochemically. Selectivity was confirmed using other pathogens, E. coli, Proteus and Enterococcus bacterium through antimicrobial studies along with S. aureus. The biotin sensing showed linear range from 10-15 to 10-3 M, which was not obtained by conventional methods. Fourier-Transform Infra-red (FT-IR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques were used to characterize the nanoparticulate system.

6.
Infect Immun ; 90(12): e0028122, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36377894

RESUMO

Cronobacter sakazakii, an opportunistic foodborne pathogen prevalently detected in contaminated powdered infant formula, is associated with different diseases, including meningitis. It can cross the blood-brain barrier and affects the CNS. The impact of C. sakazakii on host neuronal cells and behavior is largely unknown. Hence, detailed molecular data are required to understand its severity. Caenorhabditis elegans is a unique model for studying chemical communication, as it relies on chemosensation for searching nutritional supplements. Although, C. sakazakii is pathogenic to C. elegans, our analysis indicated that C. elegans was highly attracted toward C. sakazakii compared to its food source, E. coli OP50. To study the cue for the attraction, bioactive components (RNA/Protein/Lipopolysaccharides/Metabolites) of C. sakazakii were isolated and used for observing the chemotaxis behavior of C. elegans. The results signified that C. elegans was more attracted toward acid extracted metabolites than those of the other extraction methods. The combined action of acid extracted metabolites of C. sakazakii and a candidate pathogen drastically reduced the survival of C. elegans. In addition, qPCR analysis suggested that the exposure of isolated metabolites through acid extraction to C. elegans for 24 h modified the candidate immune regulatory genes involved in pathogen recognition and kinase activity such as clec-60, clec-87, lys-7, akt-2, pkc-1, and jnk-1.


Assuntos
Cronobacter sakazakii , Cronobacter , Humanos , Lactente , Animais , Cronobacter sakazakii/genética , Cronobacter sakazakii/metabolismo , Caenorhabditis elegans , Escherichia coli , Sinais (Psicologia) , Fórmulas Infantis
7.
Dev Neurosci ; 44(6): 547-556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35797964

RESUMO

The purpose of this study was to examine whether the Cronobacter sakazakii infection-induced inflammation alters the Reelin signaling pathway that is involved in learning and memory. To test this, postnatal day (PND)-15 rat pups were either treated with Luria Bertani broth/Escherichia coli OP50/C. sakazakii through oral gavage or maintained as control and allowed to stay with their mothers until PND-24. Experimental groups' rats were subjected to long-term novel object recognition test during their adolescent age PND-30-32. Observed behavioral data showed that C. sakazakii infection causes a deficit in recognition of novel objects from known objects. Further, our analysis showed that C. sakazakii infection-mediated inflammation decreases the Reelin expression by proteolytic cleavage and alters its receptor apolipoprotein E-receptor (ApoER)-2 splice variants ApoER2 (ex19) and ApoER2 (Δ). Subsequently, downregulated Reelin alters the phosphorylation of disabled adapter protein (Dab)-1 and leads to differential expression of N-methyl-D-aspartate (NMDA) receptor subunits 2A and 2B. Further, the NMDA receptor influences the expression of postsynaptic density (PSD)-95 protein and brain-derived neurotrophic factor (BDNF). Observed results suggest a deficit in recognition of novel objects possibly due to the alternation in Reelin signaling pathway.


Assuntos
Cronobacter sakazakii , Meningite , Ratos , Animais , Proteínas da Matriz Extracelular/metabolismo , Cronobacter sakazakii/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Serina Endopeptidases/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Transtornos da Memória , Inflamação
8.
Int J Biol Macromol ; 204: 116-135, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35124023

RESUMO

In eukaryotic organisms, cell-signalling completely relies on Post Translational Modifications (PTMs) that can function as regulatory switches. Phosphorylation is a fundamental and frequently occurring PTM in almost all eukaryotes. Herein, we have studied the importance of protein phosphorylation using classical proteomic techniques in C. elegans upon bacterial infection. The differentially regulated proteins during bacterial infection were excised from SDS-PAGE (One-Dimensional) gel (TiO2 column elutes) and subjected to MALDI-TOF-MS which ended up in identifying 220 proteins kinetically. KEGG pathway analysis of those proteins suggested that MAPK pathway was part of the innate immunity. Thus, we have characterized p38-MAPK (one of the crucial downstream MAPKs) using immunoblotting, subcellular fractionation, coimmunoprecipitation, LC-MS/MS, bioinformatics studies and qPCR. Meanwhile, KU25 strain (pmk-1 mutant) exhibited an earlier mortality during infection suggesting the crucial role of p38-MAPK during host-pathogen interaction. Interestingly, Reactome pathway analysis of p38 interactors (CoIP coupled to LC-MS/MS) revealed the involvement of various proteolytic pathway players (ubiquitination, SUMOylation and Neddylation) during bacterial infection. Further, the regulation of SUMOylation and Neddylation was identified and validated using immunoblotting and qPCR analyses, respectively. Concisely, our study indicated that bacterial infection triggers the MAPK cascade to elicit innate immunity which in turn recruits proteolytic pathways to counteract the invading pathogen.


Assuntos
Infecções Bacterianas , Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatografia Líquida , Imunidade Inata , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-34639339

RESUMO

This study investigated the binding abilities of extracellular polymers produced by an environmentally isolated strain of Enterococcus hirae towards phytoestrogen endocrine disruptors-biochanin A, formonetin, genistein and daidzein. The extracellular biopolymer exhibited notable binding and removal for all four phytoestrogens, with a maximum removal of daidzein (87%) followed by genistein (72%) at a 1-1.5 mg/mL concentration. Adsorption proceeded rapidly at ambient temperature. The adsorption data fitted well with the Langmuir isotherm. Based on the adsorption energy, the biopolymer binding of phytoestrogens was inferred as daidzein > genistein > biochanin A > formononetin. Toxicity of the biopolymer (5-250 µg/mL) evaluated using RAW 264.7 cell lines indicated no significant (p < 0.05) changes in viability. In biopolymer-challenged Caenorhabditis elegans previously exposed to daidzein, complete protection to developmental toxicity, such as reduced egg-laying capacity, egg viability and progeny counts of the worm, was observed. The results of this study offer valuable insights into understanding the potential role of microbial extracellular biopolymers in binding and removal of phytoestrogens with sustainable technological implications in modulating the toxic effect of high levels of endocrine disruptors in the environment.


Assuntos
Disruptores Endócrinos , Isoflavonas , Animais , Caenorhabditis elegans , Disruptores Endócrinos/toxicidade , Genisteína/toxicidade , Fitoestrógenos/toxicidade , Polímeros , Água
10.
ACS Chem Neurosci ; 12(22): 4336-4349, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34704733

RESUMO

Metabolomic reprogramming plays a crucial role in the activation of several regulatory mechanisms including neuronal responses of the host. In the present study, alterations at physiological and biochemical levels were initially assessed to monitor the impact of the candidate pathogen Cronobacter sakazakii on the nematode host Caenorhabditis elegans. The abnormal behavioral responses were observed in infected worms in terms of hyperosmolarity and high viscous chemicals. The microscopic observations indicated reduction in egg laying and internal hatching of larvae in the host. An increased level of total reactive oxygen species and reduction in antioxidant agents such as glutathione and catalase were observed. These observations suggested the severe effect of C. sakazakii infection on C. elegans. To understand the small molecules which likely mediated neurotransmission, the whole metabolome of C. elegans during the infection of C. sakazakii was analyzed using liquid chromatography-mass spectrometry. A decrease in the quantity of methyl dopamine and palmitoyl dopamine and an increase in hydroxyl dopamine suggested that reduction in dopamine reuptake and dopamine neuronal stress. The disordered dopaminergic transmission during infection was confirmed using transgenic C. elegans by microscopic observation of Dat-1 protein expression. In addition, reduction in arachidonic acid and short-chain fatty acids revealed their effect on lipid droplet formation as well as neuronal damage. An increase in the quantity of stearoyl CoA underpinned the higher accumulation of lipid droplets in the host. On the other hand, an increased level of metabolites such as palmitoyl serotonin, citalopram N-oxide, and N-acyl palmitoyl serotonin revealed serotonin-mediated potential response for neuroprotection, cytotoxicity, and cellular damage. Based on the metabolomic data, the genes correspond to small molecules involved in biosynthesis and transportation of candidate neurotransmitters were validated through relative gene expression.


Assuntos
Caenorhabditis elegans , Cronobacter sakazakii , Animais , Animais Geneticamente Modificados , Dopamina , Serotonina
11.
Microbes Infect ; 23(9-10): 104846, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34091025

RESUMO

Routinely, studies were performed using age-synchronized group of Caenorhabditis elegans as host which suggested a collective response by the host system. Here, we report the modulation of immune response in a single nematode against Staphylococcus aureus and Proteus mirabilis. Initially, the survival of wild-type N2 was tested and was found that S. aureus killed single nematode at 42 h while P. mirabilis failed to provoke infection but colonized the nematode's intestine. With this milieu, the pathogenicity of the bacteria was assessed by Fourier Transform Infra-Red (FTIR) spectroscopy and Cyclic Voltammetry (CV) and was found that S. aureus in the presence of host elicited its virulence while P. mirabilis and Escherichia coli OP50 did not show any alteration. Vertical transmission of infection was also deduced by colony forming unit assay using Cyanine dyes. The MALDI-TOF/TOF analysis was also performed to identify the proteome changes in the single nematode that showcased different proteins related to various immune pathways. This study suggested the importance of understanding the infection pathology and traits of individual nematode which could help our understanding on otherwise the disordered processes during host and microbe interactions.


Assuntos
Caenorhabditis elegans , Infecções Estafilocócicas , Animais , Caenorhabditis elegans/microbiologia , Escherichia coli/genética , Imunidade , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Virulência
12.
Microb Pathog ; 157: 104952, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022354

RESUMO

Infection following injury is one of the major threats which causes huge economic burden in wound care management all over the world. Injury often results with poor healing when coupled by following infection. In contrast to this, we observed enhanced survival of wound infected worms compared to wounded worms in Caenorhabditis elegans wound model while infecting with Staphylococcus aureus. Hence, the study was intended to identify the mechanism for the enhanced survival of wound infected worms through LCMS/MS based high throughput proteomic analysis. Bioinformatics analyses of the identified protein players indicated differential enrichment of several pathways including MAPK signaling, oxidative phosphorylation and phosphatidylinositol signaling. Inhibition of oxidative phosphorylation and phosphatidylinositol signaling through chemical treatment showed complete reversal of the enhanced survival during wound infection nevertheless mutant of MAPK pathway did not reverse the same. Consequently, it was delineated that oxidative phosphorylation and phosphatidylinositol signaling are crucial for the survival. In this regard, elevated calcium signals and ROS including O- and H2O2 were observed in wounded and wound infected worms. Consequently, it was insinuated that presence of pathogen stress could have incited survival in wound infected worms with the aid of elevated ROS and calcium signals.


Assuntos
Proteínas de Caenorhabditis elegans , Infecção dos Ferimentos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Peróxido de Hidrogênio , Estresse Oxidativo , Proteômica , Staphylococcus aureus/metabolismo
13.
Genes Immun ; 22(2): 75-92, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33986511

RESUMO

Bacterial effector molecules are crucial infectious agents that can cause pathogenesis. In the present study, the pathogenesis of toxic Salmonella enterica serovar Typhi (S. Typhi) proteins on the model host Caenorhabditis elegans was investigated by exploring the host's regulatory proteins during infection through the quantitative proteomics approach. Extracted host proteins were analyzed using two-dimensional gel electrophoresis (2D-GE) and differentially regulated proteins were identified using MALDI TOF/TOF/MS analysis. Of the 150 regulated proteins identified, 95 were downregulated while 55 were upregulated. The interaction network of regulated proteins was predicted using the STRING tool. Most downregulated proteins were involved in muscle contraction, locomotion, energy hydrolysis, lipid synthesis, serine/threonine kinase activity, oxidoreductase activity, and protein unfolding. Upregulated proteins were involved in oxidative stress pathways. Hence, cellular stress generated by S. Typhi proteins in the model host was determined using lipid peroxidation as well as oxidant and antioxidant assays. In addition, candidate proteins identified via extract analysis were validated by western blotting, and the roles of several crucial molecules were analyzed in vivo using transgenic strains (myo-2 and col-19) and mutant (ogt-1) of C. elegans. To the best of our knowledge, this is the first study to report protein regulation in host C. elegans exposed to toxic S. Typhi proteins. It highlights the significance of p38 MAPK and JNK immune pathways.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas de Bactérias , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteômica , Salmonella typhi/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
J Proteomics ; 240: 104222, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33831597

RESUMO

Wound repair is a multistep process which involves coordination of multiple molecular players from different cell types and pathways. Though the cellular processes that are taking place in order to repair damage is already known, molecular players involved in crucial pathways are still scarce. In this regard, the present study intends to uncover crucial players that are involved in the central repair events through proteomics approach which included 2-D GE and LC-MS/MS using Caenorhabditis elegans wound model. Initial gel-based 2-D GE and following protein-protein interaction (PPI) network analyses revealed active role of calcium signaling, acetylcholine transport and serotonergic neurotransmitter pathways. Further, gel-free LC-MS/MS and following PPI network analyses revealed the incidence of actin nucleation at the initial hours immediately after injury. Further by visualizing the PPI network and the interacting players, pink-1, a mitochondrial Serine/threonine-protein kinase which is known to regulate mitochondrial dynamics, was found to be the central player in facilitating the mitochondrial fission and its role was further verified using qPCR analysis and pink-1 transgenic worms. Overall, the study delivers new insights from crucial regulatory pathways and central players involved in wound repair using high throughput proteomic approaches and the mass spectrometry Data (PXD024629/PXD024744) are available via ProteomeXchange. SIGNIFICANCE.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem
15.
Bio Protoc ; 11(2): e3885, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33732774

RESUMO

Research on wound healing majorly relies on rat, mice and other animal models. However, an alternative animal model ought to be brought in the field, pertaining to the stringent ethical issues owing to the use of animals in research. In this regard, Caenorhabdits elegans, a miniature model nematode gains the great attention of the researchers in wound healing. Though, the model is being explored in wound research for more than a decade, the existing protocols lack the acquisition of large wound population that in turn could enable the utility of global genomics (G), proteomics (P) and metabolomics (M) based approaches. In order to overcome the inadequacy of the existing protocols, the protocol described here affords the acquisition of voluminous wound population in C. elegans using truncated glasswool pieces to enable the utility of high throughput analytical techniques. Graphic abstract: Steps involved in glass wool wounding protocol.

16.
Mol Omics ; 17(2): 210-229, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33598670

RESUMO

Metabolomics, an analytical study with high-throughput profiling, helps to understand interactions within a biological system. Small molecules, called metabolites or metabolomes with the size of <1500 Da, depict the status of a biological system in a different manner. Currently, we are in need to globally analyze the metabolome and the pathways involved in healthy, as well as diseased conditions, for possible therapeutic applications. Metabolome analysis has revealed high-abundance molecules during different conditions such as diet, environmental stress, microbiota, and disease and treatment states. As a result, it is hard to understand the complete and stable network of metabolites of a biological system. This review helps readers know the available techniques to study metabolomics in addition to other major omics such as genomics, transcriptomics, and proteomics. This review also discusses the metabolomics in various pathological conditions and the importance of metabolomics in therapeutic applications.


Assuntos
Metaboloma/genética , Metabolômica/tendências , Microbiota/genética , Biologia de Sistemas/tendências , Biologia Computacional , Dieta/efeitos adversos , Genômica/tendências , Humanos , Proteômica/tendências , Estresse Fisiológico/genética
17.
J Mol Neurosci ; 71(1): 28-41, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32567007

RESUMO

This study was designed to test whether the Cronobacter sakazakii infection-impaired contextual learning and memory are mediated by the activation of the complement system; subsequent activation of inflammatory signals leads to alternations in serotonin transporter (SERT). To test this, rat pups (postnatal day, PND 15) were treated with either C. sakazakii (107 CFU) or Escherichia coli OP50 (107 CFU) or Luria bertani broth (100 µL) through oral gavage and allowed to stay with their mothers until PND 24. Experimental groups' rats were allowed to explore (PNDs 31-35) and then trained in contextual learning task (PNDs 36-43). Five days after training, individuals were tested for memory retention (PNDs 49-56). Observed behavioural data showed that C. sakazakii infection impaired contextual-associative learning and memory. Furthermore, our analysis showed that C. sakazakii infection activates complement system complement anaphylatoxin (C5a) (a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS1)) and mitogen-activated protein kinase kinase1 (MEKK1). Subsequently, MEKK1 induces pro-inflammatory signals possibly through apoptosis signal-regulating kinase-1 (ASK-1), c-Jun N-terminal kinase (JNK1/3) and protein kinase B gamma (AKT-3). In parallel, activated nuclear factor kappa-light-chain-enhancer B cells (NF-κB) induces interleukin-6 (IL-6) and IFNα-1, which may alter the level of serotonin transporter (SERT). Observed results suggest that impaired contextual learning and memory could be correlated with C5a-mediated NF-κß and ASK1 pathways.


Assuntos
Aprendizagem por Associação/fisiologia , Ativação do Complemento , Complemento C5a/fisiologia , Cronobacter sakazakii/patogenicidade , Infecções por Enterobacteriaceae/complicações , Deficiências da Aprendizagem/etiologia , MAP Quinase Quinase Quinase 5/fisiologia , Transtornos da Memória/etiologia , NF-kappa B/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Serotonina/metabolismo , Transdução de Sinais/fisiologia , Proteína ADAMTS1/metabolismo , Animais , Animais Lactentes , Córtex Cerebral/metabolismo , Infecções por Enterobacteriaceae/imunologia , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/imunologia , Regulação da Expressão Gênica/imunologia , Inflamação , Interferon-alfa/metabolismo , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Deficiências da Aprendizagem/imunologia , Deficiências da Aprendizagem/microbiologia , MAP Quinase Quinase Quinase 1/metabolismo , Transtornos da Memória/imunologia , Transtornos da Memória/microbiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
18.
J Biochem Mol Toxicol ; 35(1): e22632, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32926499

RESUMO

Alzheimer's disease (AD) accounts for an estimated 60% to 80% of all dementia cases. The present study is aimed at evaluating the neuroprotective efficacy of vitexin, an apigenin flavone glycoside using transgenic Caenorhabditis elegans strain (CL2006) of AD. The neuroprotective effect of vitexin was determined using physiological assays, quantitative polymerase chain reaction, and Western blotting. The results of survival and paralysis assay indicate that vitexin (200 µM) significantly extended the lifespan of the nematodes. Vitexin-treated nematodes showed a significant reduction in the expression of Aß, ace-1, and ace-2 genes when compared to control. Further, vitexin significantly upregulated the expression of acr-8 and dnj-14, and increased the lifespan of the nematodes. Vitexin was also found to modulate the unfolded protein response genes (hsp-4, pek-1, ire-1, and xbp-1) and suppress the expression of Aß. Overall, the results show that vitexin acts as a neuroprotective agent and protects transgenic C. elegans strains from Aß proteotoxicity.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais Geneticamente Modificados/metabolismo , Apigenina/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Animais Geneticamente Modificados/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Modelos Animais de Doenças , Humanos , Resposta a Proteínas não Dobradas/genética
19.
Adv Exp Med Biol ; 1353: 47-70, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35137367

RESUMO

INTRODUCTION: COVID-19 outbreak displayed presumably an increased accumulation of SARS-CoV-2 virus during comorbid complications and a substantial variation in the mortality within and between the countries, which in turn siren us the lack of knowledge in host-pathogen interactions (HPIs). Our aim is to describe the lessons taught by the COVID-19 pandemic in the existing/missing investigations on HPI. METHODS: This was from a retrospective meta-analysis of literature on "COVID-19 and comorbidity" to expose the existing paradigm gap in HPI by highlighting the omitted concepts/areas of research and new approaches to consider for the development of future therapeutics. RESULTS: Literature on "COVID-19 and comorbidity" apparently depicted the disparity in HPI during comorbid/immune-challenged conditions, which was reflected in the poor prognosis of the disease and failed therapeutics upon clinical trials. Moreover, the entry, adherence, multiplication, and the following establishment of infection were also varied in groups with various comorbidities. This edified that the mode of interaction of an infectious agent could vary according to the immunological and health status of the host system and hence the efficiency/success rate of treatment modalities. In addition, limited number of literature on HPI upon comorbid and immune-challenged conditions of the host manifestly indicated that there is a lack of our focus/attention on consideration of the host immune/health-specific factors in HPI studies. These alert us that the development of unambiguous therapeutic approaches is needed for a better/successful treatment of novel infectious agents in the future. CONCLUSION: By understanding the immunological state exhibited in SARS-CoV-2 infection, we conclude that the COVID-19 pandemic has taught us a great lesson that our current understanding of HPI is insufficient to fight and conquer novel infections in real life. Hence, newer approaches are obligatory to understand HPI in order to combat COVID-19-like outbreaks in the future, if any, and also to design novel immunogenic/nutraceutical-based therapeutics.


Assuntos
COVID-19 , Interações Hospedeiro-Patógeno , Humanos , Pandemias , Estudos Retrospectivos , SARS-CoV-2
20.
Antonie Van Leeuwenhoek ; 113(11): 1587-1600, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32918643

RESUMO

The study reports protective role of potential probiotic cultures against infection by biofilm forming Cronobacter sakazakii in Caenorhabditis elegans model system. Among the fifteen indigenous potential probiotics, the cell free supernatant of Lactobacillus gastricus BTM7 possessed highest antimicrobial action and biofilm inhibition against C. sakazakii. The competitive exclusion assays revealed that preconditioning with probiotics resulted in increased mean life span of the nematode to 12-13 days as compared to 5-6 days when the pathogen was administered alone. Enhanced expression of the marker genes (pmk-1, daf-16 and skn-1) was observed during the administration of probiotic cultures. The highest expression of pmk-1 (2.5 folds) was observed with administration of L. gastricus BTM7. The principal component analysis on selected variables revealed that L. gastricus BTM7 has the potential to limit the infection of C. sakazakii in C. elegans and enhance the expression of key genes involved in extending life span of the worm.


Assuntos
Biofilmes/crescimento & desenvolvimento , Caenorhabditis elegans/microbiologia , Cronobacter sakazakii/crescimento & desenvolvimento , Cronobacter sakazakii/patogenicidade , Lactobacillus/fisiologia , Probióticos , Animais , Caenorhabditis elegans/genética , Longevidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...